带连接槽的创新型 GFRP 复合夹芯板的制造工艺和承载能力研究

Yanpin Du, Yujun Qi
{"title":"带连接槽的创新型 GFRP 复合夹芯板的制造工艺和承载能力研究","authors":"Yanpin Du, Yujun Qi","doi":"10.1088/1742-6596/2730/1/012060","DOIUrl":null,"url":null,"abstract":"Composite sandwich panels have been widely utilized in various fields, including civil engineering, wind turbine blades, and transportation engineering, due to their lightweight, high strength, corrosion resistance, and exceptional thermal and damping properties. This paper introduces a novel wood-core composite sandwich panel produced through pultrusion. It features connection grooves designed to fulfill lateral connection requirements. The production of this innovative composite sandwich panel has been completed. The bending load-bearing capacity of this panel is comprehensively studied through theoretical analysis, and a modeling approach utilizing the general finite element software ANSYS is introduced. Ultimately, the efficacy of both theoretical methods and finite element simulations is verified through rigorous experiments. The research findings presented in this paper are highly significant for optimizing the design and manufacturing of composite sandwich panels, ultimately enhancing their utilization in rail transit vehicles and other industries.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on manufacturing process and load-bearing capacity of innovative GFRP composite sandwich panels with connecting grooves\",\"authors\":\"Yanpin Du, Yujun Qi\",\"doi\":\"10.1088/1742-6596/2730/1/012060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite sandwich panels have been widely utilized in various fields, including civil engineering, wind turbine blades, and transportation engineering, due to their lightweight, high strength, corrosion resistance, and exceptional thermal and damping properties. This paper introduces a novel wood-core composite sandwich panel produced through pultrusion. It features connection grooves designed to fulfill lateral connection requirements. The production of this innovative composite sandwich panel has been completed. The bending load-bearing capacity of this panel is comprehensively studied through theoretical analysis, and a modeling approach utilizing the general finite element software ANSYS is introduced. Ultimately, the efficacy of both theoretical methods and finite element simulations is verified through rigorous experiments. The research findings presented in this paper are highly significant for optimizing the design and manufacturing of composite sandwich panels, ultimately enhancing their utilization in rail transit vehicles and other industries.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2730/1/012060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2730/1/012060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复合材料夹芯板具有重量轻、强度高、耐腐蚀、热性能和阻尼性能优异等特点,已被广泛应用于土木工程、风力涡轮机叶片和交通工程等多个领域。本文介绍了一种通过拉挤工艺生产的新型木芯复合材料夹芯板。它的连接槽设计可满足横向连接要求。这种创新型复合夹芯板的生产已经完成。通过理论分析全面研究了该板材的弯曲承载能力,并介绍了利用通用有限元软件 ANSYS 的建模方法。最后,通过严格的实验验证了理论方法和有限元模拟的有效性。本文的研究成果对于优化复合材料夹层板的设计和制造,最终提高其在轨道交通车辆和其他行业中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on manufacturing process and load-bearing capacity of innovative GFRP composite sandwich panels with connecting grooves
Composite sandwich panels have been widely utilized in various fields, including civil engineering, wind turbine blades, and transportation engineering, due to their lightweight, high strength, corrosion resistance, and exceptional thermal and damping properties. This paper introduces a novel wood-core composite sandwich panel produced through pultrusion. It features connection grooves designed to fulfill lateral connection requirements. The production of this innovative composite sandwich panel has been completed. The bending load-bearing capacity of this panel is comprehensively studied through theoretical analysis, and a modeling approach utilizing the general finite element software ANSYS is introduced. Ultimately, the efficacy of both theoretical methods and finite element simulations is verified through rigorous experiments. The research findings presented in this paper are highly significant for optimizing the design and manufacturing of composite sandwich panels, ultimately enhancing their utilization in rail transit vehicles and other industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1