Donglai Zhou, Tao Yu, Zhi Zhang, Guanhua Li, Yaomin Li
{"title":"综合生物信息学分析表明,IRF8 是动脉粥样硬化进展过程中免疫浸润的关键生物标志物。","authors":"Donglai Zhou, Tao Yu, Zhi Zhang, Guanhua Li, Yaomin Li","doi":"10.1111/1440-1681.13872","DOIUrl":null,"url":null,"abstract":"<p>Atherosclerosis, a lipid-driven chronic inflammatory disorder, is a significant global health concern associated with high rates of morbidity and mortality, imposing a substantial societal burden. The purpose of this study is to investigate the possible molecular mechanisms of atherosclerosis and identify potential therapeutic targets. We conducted an integrated bioinformatics analysis using data from peripheral blood mononuclear cell and TISSUE databases obtained from the Gene Expression Omnibus, to identify key genes associated with the progression of atherosclerosis. Here, <i>IRF8</i> was found to be a key gene in atherosclerosis patients. Silencing <i>IRF8</i> with small interfering RNA reduced inflammation in endothelial cells. This suggests IRF8 is a crucial biomarker for immune infiltration in atherosclerosis advance.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated bioinformatics analysis reveals IRF8 as a critical biomarker for immune infiltration in atherosclerosis advance\",\"authors\":\"Donglai Zhou, Tao Yu, Zhi Zhang, Guanhua Li, Yaomin Li\",\"doi\":\"10.1111/1440-1681.13872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atherosclerosis, a lipid-driven chronic inflammatory disorder, is a significant global health concern associated with high rates of morbidity and mortality, imposing a substantial societal burden. The purpose of this study is to investigate the possible molecular mechanisms of atherosclerosis and identify potential therapeutic targets. We conducted an integrated bioinformatics analysis using data from peripheral blood mononuclear cell and TISSUE databases obtained from the Gene Expression Omnibus, to identify key genes associated with the progression of atherosclerosis. Here, <i>IRF8</i> was found to be a key gene in atherosclerosis patients. Silencing <i>IRF8</i> with small interfering RNA reduced inflammation in endothelial cells. This suggests IRF8 is a crucial biomarker for immune infiltration in atherosclerosis advance.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13872\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13872","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
An integrated bioinformatics analysis reveals IRF8 as a critical biomarker for immune infiltration in atherosclerosis advance
Atherosclerosis, a lipid-driven chronic inflammatory disorder, is a significant global health concern associated with high rates of morbidity and mortality, imposing a substantial societal burden. The purpose of this study is to investigate the possible molecular mechanisms of atherosclerosis and identify potential therapeutic targets. We conducted an integrated bioinformatics analysis using data from peripheral blood mononuclear cell and TISSUE databases obtained from the Gene Expression Omnibus, to identify key genes associated with the progression of atherosclerosis. Here, IRF8 was found to be a key gene in atherosclerosis patients. Silencing IRF8 with small interfering RNA reduced inflammation in endothelial cells. This suggests IRF8 is a crucial biomarker for immune infiltration in atherosclerosis advance.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.