{"title":"低温电子显微镜数据处理的进展:满足视觉蛋白质组学的需求。","authors":"Abigail J.I. Watson , Alberto Bartesaghi","doi":"10.1016/j.sbi.2024.102861","DOIUrl":null,"url":null,"abstract":"<div><p>Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures. These advances in data processing are enabling cryo-ET to attain higher resolution and extending its applicability to more complex samples.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102861"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000885/pdfft?md5=9f902b53cfee390e3b02499c26d98828&pid=1-s2.0-S0959440X24000885-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in cryo-ET data processing: meeting the demands of visual proteomics\",\"authors\":\"Abigail J.I. Watson , Alberto Bartesaghi\",\"doi\":\"10.1016/j.sbi.2024.102861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures. These advances in data processing are enabling cryo-ET to attain higher resolution and extending its applicability to more complex samples.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102861\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000885/pdfft?md5=9f902b53cfee390e3b02499c26d98828&pid=1-s2.0-S0959440X24000885-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000885\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000885","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Advances in cryo-ET data processing: meeting the demands of visual proteomics
Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures. These advances in data processing are enabling cryo-ET to attain higher resolution and extending its applicability to more complex samples.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation