针对疟疾传播的免疫机制:疫苗开发的机遇。

IF 5.5 3区 医学 Q1 IMMUNOLOGY Expert Review of Vaccines Pub Date : 2024-01-01 Epub Date: 2024-06-25 DOI:10.1080/14760584.2024.2369583
Geetha P Bansal, Nirbhay Kumar
{"title":"针对疟疾传播的免疫机制:疫苗开发的机遇。","authors":"Geetha P Bansal, Nirbhay Kumar","doi":"10.1080/14760584.2024.2369583","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination.</p><p><strong>Areas covered: </strong>In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector.</p><p><strong>Expert opinion: </strong>To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":" ","pages":"645-654"},"PeriodicalIF":5.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immune mechanisms targeting malaria transmission: opportunities for vaccine development.\",\"authors\":\"Geetha P Bansal, Nirbhay Kumar\",\"doi\":\"10.1080/14760584.2024.2369583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination.</p><p><strong>Areas covered: </strong>In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector.</p><p><strong>Expert opinion: </strong>To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.</p>\",\"PeriodicalId\":12326,\"journal\":{\"name\":\"Expert Review of Vaccines\",\"volume\":\" \",\"pages\":\"645-654\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14760584.2024.2369583\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2024.2369583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:疟疾仍然是全球主要的健康问题,2022 年临床病例将近 25 亿,死亡人数超过 6 万。疫苗研发工作已取得重大进展,但已批准的疫苗疗效不佳,需要多次免疫接种,因此需要继续努力改进疫苗。不过,迄今取得的进展为消除疟疾提供了动力:在这篇综述中,我们将重点关注针对人类宿主配子体的各种免疫机制,以及配子体通过蚊媒介导的疟疾传播:要实现消灭疟疾的目标,关键是要针对蚊子传播疟疾的过程,这一过程完全由从受感染脊椎动物宿主体内摄取的有性阶段(即雄性和雌性配子体)介导。几十年来的研究已经确定,在蚊子中肠中发育的寄生虫有性阶段中的抗原是开发传播阻断疫苗(TBV)的诱人靶标。脊椎动物宿主体内配子细胞的免疫清除可与 TBV 协同作用,直接帮助维持有效的传播,降低免疫潜能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immune mechanisms targeting malaria transmission: opportunities for vaccine development.

Introduction: Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination.

Areas covered: In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector.

Expert opinion: To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Review of Vaccines
Expert Review of Vaccines 医学-免疫学
CiteScore
9.10
自引率
3.20%
发文量
136
审稿时长
4-8 weeks
期刊介绍: Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review. The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.
期刊最新文献
Adult vaccination in three Eastern Mediterranean countries: current status, challenges and the way forward. Immunogenicity and safety of two-dose or three-dose regimens of inactivated COVID-19 vaccines in patients with pulmonary tuberculosis: a randomized clinical trial. A descriptive review on the real-world impact of Moderna, inc. COVID-19 vaccines. Estimating the time required to reach HPV vaccination targets across Europe. Vaccination strategies for patients under monoclonal antibody and other biological treatments: an updated comprehensive review based on EMA authorizations to January 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1