在大气压力下从 Opuntia microdasys 仙人掌小窠中解吸正离子和负离子:Cactus-MS.

Q3 Physics and Astronomy Mass spectrometry Pub Date : 2024-01-01 Epub Date: 2024-06-12 DOI:10.5702/massspectrometry.A0146
Jürgen H Gross
{"title":"在大气压力下从 Opuntia microdasys 仙人掌小窠中解吸正离子和负离子:Cactus-MS.","authors":"Jürgen H Gross","doi":"10.5702/massspectrometry.A0146","DOIUrl":null,"url":null,"abstract":"<p><p>The areoles and spines of cacti can be used to desorb ions of ionic liquids (ILs) by the mere action of an electric field into the atmospheric pressure (AP) interface of a mass spectrometer. The small cactus species <i>Opuntia microdasys</i> bears numerous very fine hairs on its areoles and tiny sharp spines that appeared suited to serve as needle electrodes sharp enough for field desorption of ions to occur. In fact, positive and negative ions of four ILs could be desorbed by a process analogous to AP field desorption (APFD). In contrast to APFD where activated field emitters are employed, the ILs were deposited onto one or two adjacent areoles by applying 1-3 µL of a dilute solution in methanol. After evaporation of the solvent, the cactus was positioned next to the spray shield electrode of a trapped ion mobility-quadrupole-time-of-flight instrument. Desorption of IL cations and IL anions, respectively, did occur as soon as the electrode was set to potentials in the order of ±4.5 kV, while the cactus at ground potential was manually positioned in front of the entrance electrode to bring the areole covered with a film of the sample into the right position. Neither did mixing of ILs occur between neighboring areoles nor did the cactus suffer any damage upon its use as a botanical field emitter.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0146"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Desorption of Positive and Negative Ions from Areoles of <i>Opuntia microdasys</i> Cactus at Atmospheric Pressure: Cactus-MS.\",\"authors\":\"Jürgen H Gross\",\"doi\":\"10.5702/massspectrometry.A0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The areoles and spines of cacti can be used to desorb ions of ionic liquids (ILs) by the mere action of an electric field into the atmospheric pressure (AP) interface of a mass spectrometer. The small cactus species <i>Opuntia microdasys</i> bears numerous very fine hairs on its areoles and tiny sharp spines that appeared suited to serve as needle electrodes sharp enough for field desorption of ions to occur. In fact, positive and negative ions of four ILs could be desorbed by a process analogous to AP field desorption (APFD). In contrast to APFD where activated field emitters are employed, the ILs were deposited onto one or two adjacent areoles by applying 1-3 µL of a dilute solution in methanol. After evaporation of the solvent, the cactus was positioned next to the spray shield electrode of a trapped ion mobility-quadrupole-time-of-flight instrument. Desorption of IL cations and IL anions, respectively, did occur as soon as the electrode was set to potentials in the order of ±4.5 kV, while the cactus at ground potential was manually positioned in front of the entrance electrode to bring the areole covered with a film of the sample into the right position. Neither did mixing of ILs occur between neighboring areoles nor did the cactus suffer any damage upon its use as a botanical field emitter.</p>\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"13 1\",\"pages\":\"A0146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.A0146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

仙人掌的小孔和尖刺可用于解吸离子液体(IL)中的离子,只需将电场作用到质谱仪的大气压(AP)界面上即可。小型仙人掌物种 Opuntia microdasys 的小孔上长有许多非常细的绒毛和尖锐的小刺,似乎适合用作针状电极,其锋利程度足以使离子在电场作用下解吸。事实上,四种 IL 的正离子和负离子可以通过类似于 APFD 的过程解吸。与采用活化场发射器的 APFD 不同,IL 是通过施加 1-3 µL 的甲醇稀释溶液沉积到一个或两个相邻的小孔上的。蒸发溶剂后,将仙人掌置于捕获离子淌度四极杆飞行时间仪器的喷雾屏蔽电极旁。当电极的电位设定在 ±4.5 kV 左右时,IL 阳离子和 IL 阴离子分别发生解吸,而接地电位的仙人掌则被手动放置在入口电极的前面,使覆盖着一层样品薄膜的小孔处于正确的位置。在将仙人掌用作植物场发射器时,相邻小孔之间既没有发生 IL 混合,也没有受到任何损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Desorption of Positive and Negative Ions from Areoles of Opuntia microdasys Cactus at Atmospheric Pressure: Cactus-MS.

The areoles and spines of cacti can be used to desorb ions of ionic liquids (ILs) by the mere action of an electric field into the atmospheric pressure (AP) interface of a mass spectrometer. The small cactus species Opuntia microdasys bears numerous very fine hairs on its areoles and tiny sharp spines that appeared suited to serve as needle electrodes sharp enough for field desorption of ions to occur. In fact, positive and negative ions of four ILs could be desorbed by a process analogous to AP field desorption (APFD). In contrast to APFD where activated field emitters are employed, the ILs were deposited onto one or two adjacent areoles by applying 1-3 µL of a dilute solution in methanol. After evaporation of the solvent, the cactus was positioned next to the spray shield electrode of a trapped ion mobility-quadrupole-time-of-flight instrument. Desorption of IL cations and IL anions, respectively, did occur as soon as the electrode was set to potentials in the order of ±4.5 kV, while the cactus at ground potential was manually positioned in front of the entrance electrode to bring the areole covered with a film of the sample into the right position. Neither did mixing of ILs occur between neighboring areoles nor did the cactus suffer any damage upon its use as a botanical field emitter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS). Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1