根据肠道微生物群预测巴雷特食管的潜在恶化:孟德尔随机分析。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2024-09-01 Epub Date: 2024-06-17 DOI:10.1007/s00335-024-10042-7
Conghan Li, Panyin Shu, Taiyu Shi, Yuerong Chen, Ping Mei, Yizhong Zhang, Yan Wang, Xinyan Du, Jianning Wang, Yixin Zhang, Bin Liu, Zhijin Sheng, Shixin Chan, Zhangyong Dan
{"title":"根据肠道微生物群预测巴雷特食管的潜在恶化:孟德尔随机分析。","authors":"Conghan Li, Panyin Shu, Taiyu Shi, Yuerong Chen, Ping Mei, Yizhong Zhang, Yan Wang, Xinyan Du, Jianning Wang, Yixin Zhang, Bin Liu, Zhijin Sheng, Shixin Chan, Zhangyong Dan","doi":"10.1007/s00335-024-10042-7","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and \"leave-one-out\" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10<sup>-2</sup>), Lactobacillus (P = 2.11 × 10<sup>-2</sup>), Prevotella 7 (P = 4.28 × 10<sup>-2</sup>), and RuminococcaceaeUCG004 (P = 4.34 × 10<sup>-2</sup>) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10<sup>-3</sup>) and RuminococcaceaeUCG004 (P = 4.99 × 10<sup>-2</sup>) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10<sup>-2</sup>), Holdemania (P = 1.22 × 10<sup>-2</sup>), and Lactococcus (P = 3.39 × 10<sup>-2</sup>) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10<sup>-2</sup>) and Actinomyces (P = 3.62 × 10<sup>-3</sup>) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the potential deterioration of Barrett's esophagus based on gut microbiota: a Mendelian randomization analysis.\",\"authors\":\"Conghan Li, Panyin Shu, Taiyu Shi, Yuerong Chen, Ping Mei, Yizhong Zhang, Yan Wang, Xinyan Du, Jianning Wang, Yixin Zhang, Bin Liu, Zhijin Sheng, Shixin Chan, Zhangyong Dan\",\"doi\":\"10.1007/s00335-024-10042-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and \\\"leave-one-out\\\" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10<sup>-2</sup>), Lactobacillus (P = 2.11 × 10<sup>-2</sup>), Prevotella 7 (P = 4.28 × 10<sup>-2</sup>), and RuminococcaceaeUCG004 (P = 4.34 × 10<sup>-2</sup>) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10<sup>-3</sup>) and RuminococcaceaeUCG004 (P = 4.99 × 10<sup>-2</sup>) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10<sup>-2</sup>), Holdemania (P = 1.22 × 10<sup>-2</sup>), and Lactococcus (P = 3.39 × 10<sup>-2</sup>) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10<sup>-2</sup>) and Actinomyces (P = 3.62 × 10<sup>-3</sup>) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-024-10042-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10042-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食管腺癌(EAC)是消化系统中恶性程度最高的肿瘤之一。更糟糕的是,治疗方案的匮乏令人沮丧。不过,如果及早发现,还是有可能逆转病情的。遗憾的是,目前仍缺乏相关的早期筛查方法。巴雷特食管(Barrett's esophagus,BE)是 EAC 的前驱病变,已被证实是 EAC 的唯一已知前驱病变。分析哪些 BE 病例会发展为 EAC,并了解其中的过程和机制,对于早期筛查这类患者具有重要意义。考虑到 BE 患者肠道微生物群的显著变化及其在 EAC 进展过程中的潜在作用,本研究旨在分析 BE、EAC 和 GM 之间的关系,以确定潜在的诊断生物标志物和治疗靶点。本研究利用了MiBioGen联盟进行的大规模全基因组关联荟萃分析(n = 18,340)中有关肠道微生物群的综合统计数据。随后,我们选择了一组低于全基因组显著性阈值(1 × 10-5)的单核苷酸多态性(SNPs)作为工具变量。为了研究肠道微生物群与 BE 和 EAC 之间的因果关系,我们采用了多种 MR 分析方法,包括反方差加权(IVW)、MR-Egger 回归、加权中位数(WM)和加权平均值。此外,我们还通过 MR-Egger 截距检验、MR-PRESSO、Cochran's Q 检验和 "leave-one-out "敏感性分析评估了遗传变异的多向性、异质性和稳定性水平。此外,我们还进行了反向 MR 分析,以确定肠道微生物群与 BE 和 EAC 之间的因果关系。反向方差加权(IVW)分析的结果表明,Alistipes(P = 4.86 × 10-2)、Lactobacillus(P = 2.11 × 10-2)、Prevotella 7(P = 4.28 × 10-2)和RuminococcaceaeUCG004(P = 4.34 × 10-2)是巴雷特食管(BE)的危险因素,而 Flavonifractor(P = 8.81 × 10-3)和 RuminococcaceaeUCG004(P = 4.99 × 10-2)是食管腺癌(EAC)的危险因素。另一方面,某些肠道微生物群属似乎对 BE 和 EAC 都有保护作用。其中包括BE队列中的Eubacterium(nodatum组)(P = 4.51 × 10-2)、Holdemania(P = 1.22 × 10-2)和Lactococcus(P = 3.39 × 10-2),以及EAC队列中的Eubacterium(hallii组)(P = 4.07 × 10-2)和Actinomyces(P = 3.62 × 10-3)。根据反向 MR 分析结果,未观察到 BE 和 EAC 对肠道微生物群有明显的因果效应。此外,在工具变量中也没有发现明显的异质性或多义性。我们确定了肠道微生物群与 BE 和 EAC 之间的因果关系。这项研究对于筛查可能面临病情恶化风险的 BE 患者具有深远意义,因为它可以为患者提供及时的医疗干预措施,以逆转病情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the potential deterioration of Barrett's esophagus based on gut microbiota: a Mendelian randomization analysis.

Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10-2), Lactobacillus (P = 2.11 × 10-2), Prevotella 7 (P = 4.28 × 10-2), and RuminococcaceaeUCG004 (P = 4.34 × 10-2) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10-3) and RuminococcaceaeUCG004 (P = 4.99 × 10-2) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10-2), Holdemania (P = 1.22 × 10-2), and Lactococcus (P = 3.39 × 10-2) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10-2) and Actinomyces (P = 3.62 × 10-3) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1