Chiara Gnasso, Daniel Pinos, U Joseph Schoepf, Milan Vecsey-Nagy, Gilberto J Aquino, Nicola Fink, Emese Zsarnoczay, Robert J Holtackers, Jonathan Stock, Pal Suranyi, Akos Varga-Szemes, Tilman Emrich
{"title":"重建参数对第一代光子计数探测器 CT 心肌细胞外容积量化准确性的影响。","authors":"Chiara Gnasso, Daniel Pinos, U Joseph Schoepf, Milan Vecsey-Nagy, Gilberto J Aquino, Nicola Fink, Emese Zsarnoczay, Robert J Holtackers, Jonathan Stock, Pal Suranyi, Akos Varga-Szemes, Tilman Emrich","doi":"10.1186/s41747-024-00469-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The potential role of cardiac computed tomography (CT) has increasingly been demonstrated for the assessment of diffuse myocardial fibrosis through the quantification of extracellular volume (ECV). Photon-counting detector (PCD)-CT technology may deliver more accurate ECV quantification compared to energy-integrating detector CT. We evaluated the impact of reconstruction settings on the accuracy of ECV quantification using PCD-CT, with magnetic resonance imaging (MRI)-based ECV as reference.</p><p><strong>Methods: </strong>In this post hoc analysis, 27 patients (aged 53.1 ± 17.2 years (mean ± standard deviation); 14 women) underwent same-day cardiac PCD-CT and MRI. Late iodine CT scans were reconstructed with different quantum iterative reconstruction levels (QIR 1-4), slice thicknesses (0.4-8 mm), and virtual monoenergetic imaging levels (VMI, 40-90 keV); ECV was quantified for each reconstruction setting. Repeated measures ANOVA and t-test for pairwise comparisons, Bland-Altman plots, and Lin's concordance correlation coefficient (CCC) were used.</p><p><strong>Results: </strong>ECV values did not differ significantly among QIR levels (p = 1.000). A significant difference was observed throughout different slice thicknesses, with 0.4 mm yielding the highest agreement with MRI-based ECV (CCC = 0.944); 45-keV VMI reconstructions showed the lowest mean bias (0.6, 95% confidence interval 0.1-1.4) compared to MRI. Using the most optimal reconstruction settings (QIR4. slice thickness 0.4 mm, VMI 45 keV), a 63% reduction in mean bias and a 6% increase in concordance with MRI-based ECV were achieved compared to standard settings (QIR3, slice thickness 1.5 mm; VMI 65 keV).</p><p><strong>Conclusions: </strong>The selection of appropriate reconstruction parameters improved the agreement between PCD-CT and MRI-based ECV.</p><p><strong>Relevance statement: </strong>Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.</p><p><strong>Key points: </strong>• CT is increasingly promising for myocardial tissue characterization, assessing focal and diffuse fibrosis via late iodine enhancement and ECV quantification, respectively. • PCD-CT offers superior performance over conventional CT, potentially improving ECV quantification and its agreement with MRI-based ECV. • Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of reconstruction parameters on the accuracy of myocardial extracellular volume quantification on a first-generation, photon-counting detector CT.\",\"authors\":\"Chiara Gnasso, Daniel Pinos, U Joseph Schoepf, Milan Vecsey-Nagy, Gilberto J Aquino, Nicola Fink, Emese Zsarnoczay, Robert J Holtackers, Jonathan Stock, Pal Suranyi, Akos Varga-Szemes, Tilman Emrich\",\"doi\":\"10.1186/s41747-024-00469-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The potential role of cardiac computed tomography (CT) has increasingly been demonstrated for the assessment of diffuse myocardial fibrosis through the quantification of extracellular volume (ECV). Photon-counting detector (PCD)-CT technology may deliver more accurate ECV quantification compared to energy-integrating detector CT. We evaluated the impact of reconstruction settings on the accuracy of ECV quantification using PCD-CT, with magnetic resonance imaging (MRI)-based ECV as reference.</p><p><strong>Methods: </strong>In this post hoc analysis, 27 patients (aged 53.1 ± 17.2 years (mean ± standard deviation); 14 women) underwent same-day cardiac PCD-CT and MRI. Late iodine CT scans were reconstructed with different quantum iterative reconstruction levels (QIR 1-4), slice thicknesses (0.4-8 mm), and virtual monoenergetic imaging levels (VMI, 40-90 keV); ECV was quantified for each reconstruction setting. Repeated measures ANOVA and t-test for pairwise comparisons, Bland-Altman plots, and Lin's concordance correlation coefficient (CCC) were used.</p><p><strong>Results: </strong>ECV values did not differ significantly among QIR levels (p = 1.000). A significant difference was observed throughout different slice thicknesses, with 0.4 mm yielding the highest agreement with MRI-based ECV (CCC = 0.944); 45-keV VMI reconstructions showed the lowest mean bias (0.6, 95% confidence interval 0.1-1.4) compared to MRI. Using the most optimal reconstruction settings (QIR4. slice thickness 0.4 mm, VMI 45 keV), a 63% reduction in mean bias and a 6% increase in concordance with MRI-based ECV were achieved compared to standard settings (QIR3, slice thickness 1.5 mm; VMI 65 keV).</p><p><strong>Conclusions: </strong>The selection of appropriate reconstruction parameters improved the agreement between PCD-CT and MRI-based ECV.</p><p><strong>Relevance statement: </strong>Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.</p><p><strong>Key points: </strong>• CT is increasingly promising for myocardial tissue characterization, assessing focal and diffuse fibrosis via late iodine enhancement and ECV quantification, respectively. • PCD-CT offers superior performance over conventional CT, potentially improving ECV quantification and its agreement with MRI-based ECV. • Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-024-00469-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00469-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Impact of reconstruction parameters on the accuracy of myocardial extracellular volume quantification on a first-generation, photon-counting detector CT.
Background: The potential role of cardiac computed tomography (CT) has increasingly been demonstrated for the assessment of diffuse myocardial fibrosis through the quantification of extracellular volume (ECV). Photon-counting detector (PCD)-CT technology may deliver more accurate ECV quantification compared to energy-integrating detector CT. We evaluated the impact of reconstruction settings on the accuracy of ECV quantification using PCD-CT, with magnetic resonance imaging (MRI)-based ECV as reference.
Methods: In this post hoc analysis, 27 patients (aged 53.1 ± 17.2 years (mean ± standard deviation); 14 women) underwent same-day cardiac PCD-CT and MRI. Late iodine CT scans were reconstructed with different quantum iterative reconstruction levels (QIR 1-4), slice thicknesses (0.4-8 mm), and virtual monoenergetic imaging levels (VMI, 40-90 keV); ECV was quantified for each reconstruction setting. Repeated measures ANOVA and t-test for pairwise comparisons, Bland-Altman plots, and Lin's concordance correlation coefficient (CCC) were used.
Results: ECV values did not differ significantly among QIR levels (p = 1.000). A significant difference was observed throughout different slice thicknesses, with 0.4 mm yielding the highest agreement with MRI-based ECV (CCC = 0.944); 45-keV VMI reconstructions showed the lowest mean bias (0.6, 95% confidence interval 0.1-1.4) compared to MRI. Using the most optimal reconstruction settings (QIR4. slice thickness 0.4 mm, VMI 45 keV), a 63% reduction in mean bias and a 6% increase in concordance with MRI-based ECV were achieved compared to standard settings (QIR3, slice thickness 1.5 mm; VMI 65 keV).
Conclusions: The selection of appropriate reconstruction parameters improved the agreement between PCD-CT and MRI-based ECV.
Relevance statement: Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.
Key points: • CT is increasingly promising for myocardial tissue characterization, assessing focal and diffuse fibrosis via late iodine enhancement and ECV quantification, respectively. • PCD-CT offers superior performance over conventional CT, potentially improving ECV quantification and its agreement with MRI-based ECV. • Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.