鱼类种内脑区大小共变模式的多样性。

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2024-09-17 DOI:10.1093/icb/icae075
Caleb J Axelrod, Ellen M Urquhart, Pria N Mahabir, Bruce A Carlson, Swanne P Gordon
{"title":"鱼类种内脑区大小共变模式的多样性。","authors":"Caleb J Axelrod, Ellen M Urquhart, Pria N Mahabir, Bruce A Carlson, Swanne P Gordon","doi":"10.1093/icb/icae075","DOIUrl":null,"url":null,"abstract":"<p><p>Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish.\",\"authors\":\"Caleb J Axelrod, Ellen M Urquhart, Pria N Mahabir, Bruce A Carlson, Swanne P Gordon\",\"doi\":\"10.1093/icb/icae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae075\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

性状的进化往往不是孤立的,也不是独立于其他性状而变化的。相反,它们会受到物种内和物种间共变性的影响。然而,物种内性状共变的重要性,以及关键的物种间性变的程度,还有待深入研究。大脑形态是一种具有重要生态和行为意义的性状,根据假设,大脑区域的大小会随着行为和认知需求的变化而变化。在不同类群中,大脑区域的大小也被证明是相互共变的。在这里,我们测试了物种内部脑区大小的共变性在十种跃层鱼类中的保守程度。这十个物种横跨五个目,使我们能够考察系统发育的接近性如何影响种内性状共变的相似性。我们的研究结果表明,在亲缘关系较近的物种中,脑区大小的共变模式有相似的趋势。有趣的是,无论系统发育距离如何,有些脑区对在所有物种中都表现出相似的共变水平,如端脑和视神经节,而其他脑区对,如嗅球和下丘脑,则变化更为独立。最终,这里显示的脑区共变模式表明,进化机制或制约因素可以独立地作用于特定的脑区,而且这些制约因素会随着进化时间的推移而改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish.

Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
Big fish can't jump? Allometry of terrestrial jumping in cyprinodontiform fishes. Combining Morphological Characteristics and DNA Barcoding Techniques Confirm Sea Urchins of the Genus Echinometra (Echinodermata: Echinoidea) in Marine Habitat Located at Extreme Regions of the Caribbean Sea. Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Hurricane Irma Linked to Coral Skeletal Density Shifts on the Florida Keys Reef Tract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1