原位热提取月球岩石中挥发物的烘箱设计

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-06-16 DOI:10.1029/2024EA003556
Renhao Ruan, Wei Yang, Jialong Hao, Guangjun Guo
{"title":"原位热提取月球岩石中挥发物的烘箱设计","authors":"Renhao Ruan,&nbsp;Wei Yang,&nbsp;Jialong Hao,&nbsp;Guangjun Guo","doi":"10.1029/2024EA003556","DOIUrl":null,"url":null,"abstract":"<p>Extracting volatiles from lunar regolith for analysis or utilization is one of the most important aspects of future lunar exploration. However, the low thermal conductivity of lunar regolith poses a challenge. Here, we conduct simulations to analyze the heat and mass transfer processes within the sample inside the oven. We identify three main factors affecting oven heat-up rate: water ice content (WIC) in the regolith, oven diameter, and power supply. Taking these factors into account, we devise an oven design and apply it to three case studies: (a) assessing water ice and isotopic composition in Permanently Shadowed Regions, akin to Chang'e-7 mini-fly probe missions; (b) measuring noble gases, as Chang'e-7 and Luna-27 landers; and (c) large-scale in-situ resources utilization (ISRU). The simulation results indicate that water ice can be extracted using sufficiently high heating power without issues. However, the complete extraction of noble gases is challenging and may require alternative heating methods. For ISRU purposes, large ovens can be subdivided into smaller ones by adding internal structures, for example, honeycomb, to improve the heat-up rate by at least 1.5 times. Additionally, we find that the oven can serve as a scientific payload for WIC measurement using the heating curve. A flowchart of this new WIC measurement method is provided, offering an alternative method to mass spectrometry or spectroscopy measurements.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003556","citationCount":"0","resultStr":"{\"title\":\"Oven Design for In-Situ Thermal Extraction of Volatiles From Lunar Regolith\",\"authors\":\"Renhao Ruan,&nbsp;Wei Yang,&nbsp;Jialong Hao,&nbsp;Guangjun Guo\",\"doi\":\"10.1029/2024EA003556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracting volatiles from lunar regolith for analysis or utilization is one of the most important aspects of future lunar exploration. However, the low thermal conductivity of lunar regolith poses a challenge. Here, we conduct simulations to analyze the heat and mass transfer processes within the sample inside the oven. We identify three main factors affecting oven heat-up rate: water ice content (WIC) in the regolith, oven diameter, and power supply. Taking these factors into account, we devise an oven design and apply it to three case studies: (a) assessing water ice and isotopic composition in Permanently Shadowed Regions, akin to Chang'e-7 mini-fly probe missions; (b) measuring noble gases, as Chang'e-7 and Luna-27 landers; and (c) large-scale in-situ resources utilization (ISRU). The simulation results indicate that water ice can be extracted using sufficiently high heating power without issues. However, the complete extraction of noble gases is challenging and may require alternative heating methods. For ISRU purposes, large ovens can be subdivided into smaller ones by adding internal structures, for example, honeycomb, to improve the heat-up rate by at least 1.5 times. Additionally, we find that the oven can serve as a scientific payload for WIC measurement using the heating curve. A flowchart of this new WIC measurement method is provided, offering an alternative method to mass spectrometry or spectroscopy measurements.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003556\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003556","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

从月球碎屑岩中提取挥发物进行分析或利用是未来月球探测最重要的方面之一。然而,月球碎屑岩的低导热性带来了挑战。在此,我们进行了模拟,以分析样品在烘箱内的传热和传质过程。我们确定了影响烘箱升温速度的三个主要因素:碎屑岩中的水冰含量(WIC)、烘箱直径和电源。考虑到这些因素,我们设计了一种烘箱,并将其应用于三个案例研究:(a)评估永久阴影区的水冰和同位素组成,类似于嫦娥七号小型飞行探测器任务;(b)测量惰性气体,类似于嫦娥七号和月球27号着陆器;以及(c)大规模原地资源利用(ISRU)。模拟结果表明,使用足够高的加热功率可以顺利提取水冰。但是,完全提取惰性气体具有挑战性,可能需要其他加热方法。为了实现 ISRU 的目的,可以通过增加内部结构(如蜂窝)将大型烘箱细分为较小的烘箱,从而将加热速度提高至少 1.5 倍。此外,我们还发现烘箱可以作为科学有效载荷,利用加热曲线测量 WIC。我们提供了这种新的 WIC 测量方法的流程图,为质谱或光谱测量提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oven Design for In-Situ Thermal Extraction of Volatiles From Lunar Regolith

Extracting volatiles from lunar regolith for analysis or utilization is one of the most important aspects of future lunar exploration. However, the low thermal conductivity of lunar regolith poses a challenge. Here, we conduct simulations to analyze the heat and mass transfer processes within the sample inside the oven. We identify three main factors affecting oven heat-up rate: water ice content (WIC) in the regolith, oven diameter, and power supply. Taking these factors into account, we devise an oven design and apply it to three case studies: (a) assessing water ice and isotopic composition in Permanently Shadowed Regions, akin to Chang'e-7 mini-fly probe missions; (b) measuring noble gases, as Chang'e-7 and Luna-27 landers; and (c) large-scale in-situ resources utilization (ISRU). The simulation results indicate that water ice can be extracted using sufficiently high heating power without issues. However, the complete extraction of noble gases is challenging and may require alternative heating methods. For ISRU purposes, large ovens can be subdivided into smaller ones by adding internal structures, for example, honeycomb, to improve the heat-up rate by at least 1.5 times. Additionally, we find that the oven can serve as a scientific payload for WIC measurement using the heating curve. A flowchart of this new WIC measurement method is provided, offering an alternative method to mass spectrometry or spectroscopy measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data The Self-Calibrating Tilt Accelerometer: A Method for Observing Tilt and Correcting Drift With a Triaxial Accelerometer A Rare Tropical Cyclone Associated With Southwest Monsoon Over the Northern Part of the South China Sea—Tropical Storm Maliksi Improving Interpolating Accuracy of Weighted Mean Temperature by Using a Novel Lapse Rate Model in Compact VMF1 Product A Scalable, Cloud-Based Workflow for Spectrally-Attributed ICESat-2 Bathymetry With Application to Benthic Habitat Mapping Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1