Mahmut S Ozdogan, Gokce Unsal, Kubra A Aydemir, Mine Tural, Filiz Aykent
{"title":"不同抛光方法对人工加速老化后气蚀修复材料粗糙度和颜色稳定性的影响","authors":"Mahmut S Ozdogan, Gokce Unsal, Kubra A Aydemir, Mine Tural, Filiz Aykent","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effect of air abrasion and polishing procedures on roughness and color stability of ceramic and composite materials after artificial accelerated aging.</p><p><strong>Methods: </strong>In this study, six restorative materials were tested: feldspathic ceramic (CEREC Blocks), glass ceramic (IPS e.max CAD), resin-based hybrid ceramic (Cerasmart), microhybrid composite (Charisma Classic), nanohybrid composite (Charisma Diamond) and nanoceramic composite (CeramXOne). Forty square-shaped composite specimens were fabricated from each composite and CAD-CAM ceramic material. Initial surface roughness measurements were performed using a profilometer and color measurements of each specimen with a spectrophotometer. Ten control specimens for each group did not receive air abrasion. The other specimens were treated by an air abrasion device and then were randomly divided into three subgroups of 10 specimens (n= 10). After air abrasion, 10 specimens of each group did not receive polishing (Air abrasion group) and others were repolished with Sof-Lex kit (Sof-Lex group) or a rubber kit (Rubber group). Surface roughness and color measurements were repeated before and after 300 hours of artificial accelerated aging (AAA). The univariate test and then three-way ANOVA and two-way ANOVA were performed for comparison of groups (α= 0.05).</p><p><strong>Results: </strong>The univariate statistical analysis revealed that the restorative materials were differently affected after air abrasion, polishing methods and AAA (P< 0.001). Three-way ANOVA showed that the surface roughness of the restorative materials increased after air abrasion and AAA (P< 0.001). Two-way ANOVA showed statistically significant differences between color changes of ceramic (CEREC and IPS e.max CAD) and composite based restorative materials (P< 0.001).</p><p><strong>Clinical significance: </strong>Clinicians should be aware that air abrasion at a specified power and time significantly changes the surface roughness of the materials except for CEREC. Additionally, polishing procedures (Sof-Lex, Rubber) did not significantly reduce the surface roughness of the ceramic groups. After air abrasion, depending on the material type used clinically, restorations should be repolished to reduce roughness and ensure color stability.</p>","PeriodicalId":7538,"journal":{"name":"American journal of dentistry","volume":"37 3","pages":"141-146"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different polishing methods on roughness and color stability of air-abraded restorative materials after artificial accelerated aging.\",\"authors\":\"Mahmut S Ozdogan, Gokce Unsal, Kubra A Aydemir, Mine Tural, Filiz Aykent\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the effect of air abrasion and polishing procedures on roughness and color stability of ceramic and composite materials after artificial accelerated aging.</p><p><strong>Methods: </strong>In this study, six restorative materials were tested: feldspathic ceramic (CEREC Blocks), glass ceramic (IPS e.max CAD), resin-based hybrid ceramic (Cerasmart), microhybrid composite (Charisma Classic), nanohybrid composite (Charisma Diamond) and nanoceramic composite (CeramXOne). Forty square-shaped composite specimens were fabricated from each composite and CAD-CAM ceramic material. Initial surface roughness measurements were performed using a profilometer and color measurements of each specimen with a spectrophotometer. Ten control specimens for each group did not receive air abrasion. The other specimens were treated by an air abrasion device and then were randomly divided into three subgroups of 10 specimens (n= 10). After air abrasion, 10 specimens of each group did not receive polishing (Air abrasion group) and others were repolished with Sof-Lex kit (Sof-Lex group) or a rubber kit (Rubber group). Surface roughness and color measurements were repeated before and after 300 hours of artificial accelerated aging (AAA). The univariate test and then three-way ANOVA and two-way ANOVA were performed for comparison of groups (α= 0.05).</p><p><strong>Results: </strong>The univariate statistical analysis revealed that the restorative materials were differently affected after air abrasion, polishing methods and AAA (P< 0.001). Three-way ANOVA showed that the surface roughness of the restorative materials increased after air abrasion and AAA (P< 0.001). Two-way ANOVA showed statistically significant differences between color changes of ceramic (CEREC and IPS e.max CAD) and composite based restorative materials (P< 0.001).</p><p><strong>Clinical significance: </strong>Clinicians should be aware that air abrasion at a specified power and time significantly changes the surface roughness of the materials except for CEREC. Additionally, polishing procedures (Sof-Lex, Rubber) did not significantly reduce the surface roughness of the ceramic groups. After air abrasion, depending on the material type used clinically, restorations should be repolished to reduce roughness and ensure color stability.</p>\",\"PeriodicalId\":7538,\"journal\":{\"name\":\"American journal of dentistry\",\"volume\":\"37 3\",\"pages\":\"141-146\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of dentistry","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of different polishing methods on roughness and color stability of air-abraded restorative materials after artificial accelerated aging.
Purpose: To evaluate the effect of air abrasion and polishing procedures on roughness and color stability of ceramic and composite materials after artificial accelerated aging.
Methods: In this study, six restorative materials were tested: feldspathic ceramic (CEREC Blocks), glass ceramic (IPS e.max CAD), resin-based hybrid ceramic (Cerasmart), microhybrid composite (Charisma Classic), nanohybrid composite (Charisma Diamond) and nanoceramic composite (CeramXOne). Forty square-shaped composite specimens were fabricated from each composite and CAD-CAM ceramic material. Initial surface roughness measurements were performed using a profilometer and color measurements of each specimen with a spectrophotometer. Ten control specimens for each group did not receive air abrasion. The other specimens were treated by an air abrasion device and then were randomly divided into three subgroups of 10 specimens (n= 10). After air abrasion, 10 specimens of each group did not receive polishing (Air abrasion group) and others were repolished with Sof-Lex kit (Sof-Lex group) or a rubber kit (Rubber group). Surface roughness and color measurements were repeated before and after 300 hours of artificial accelerated aging (AAA). The univariate test and then three-way ANOVA and two-way ANOVA were performed for comparison of groups (α= 0.05).
Results: The univariate statistical analysis revealed that the restorative materials were differently affected after air abrasion, polishing methods and AAA (P< 0.001). Three-way ANOVA showed that the surface roughness of the restorative materials increased after air abrasion and AAA (P< 0.001). Two-way ANOVA showed statistically significant differences between color changes of ceramic (CEREC and IPS e.max CAD) and composite based restorative materials (P< 0.001).
Clinical significance: Clinicians should be aware that air abrasion at a specified power and time significantly changes the surface roughness of the materials except for CEREC. Additionally, polishing procedures (Sof-Lex, Rubber) did not significantly reduce the surface roughness of the ceramic groups. After air abrasion, depending on the material type used clinically, restorations should be repolished to reduce roughness and ensure color stability.
期刊介绍:
The American Journal of Dentistry, published by Mosher & Linder, Inc., provides peer-reviewed scientific articles with clinical significance for the general dental practitioner.