单分子膜辅助生长具有长寿命层间激子的卤化锑过氧化物/MoS2 范德华外延异质结。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-06-21 DOI:10.1021/acsnano.4c05293
Zhicheng Zhou, Juntong Zhu*, Lutao Li, Chen Wang, Changwen Zhang, Xinyu Du, Xiangyi Wang, Guoxiang Zhao, Ruonan Wang, Jiating Li, Zheng Lu, Yi Zong, Yinghui Sun, Mark H. Rümmeli* and Guifu Zou*, 
{"title":"单分子膜辅助生长具有长寿命层间激子的卤化锑过氧化物/MoS2 范德华外延异质结。","authors":"Zhicheng Zhou,&nbsp;Juntong Zhu*,&nbsp;Lutao Li,&nbsp;Chen Wang,&nbsp;Changwen Zhang,&nbsp;Xinyu Du,&nbsp;Xiangyi Wang,&nbsp;Guoxiang Zhao,&nbsp;Ruonan Wang,&nbsp;Jiating Li,&nbsp;Zheng Lu,&nbsp;Yi Zong,&nbsp;Yinghui Sun,&nbsp;Mark H. Rümmeli* and Guifu Zou*,&nbsp;","doi":"10.1021/acsnano.4c05293","DOIUrl":null,"url":null,"abstract":"<p >Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monomolecular Membrane-Assisted Growth of Antimony Halide Perovskite/MoS2 Van der Waals Epitaxial Heterojunctions with Long-Lived Interlayer Exciton\",\"authors\":\"Zhicheng Zhou,&nbsp;Juntong Zhu*,&nbsp;Lutao Li,&nbsp;Chen Wang,&nbsp;Changwen Zhang,&nbsp;Xinyu Du,&nbsp;Xiangyi Wang,&nbsp;Guoxiang Zhao,&nbsp;Ruonan Wang,&nbsp;Jiating Li,&nbsp;Zheng Lu,&nbsp;Yi Zong,&nbsp;Yinghui Sun,&nbsp;Mark H. Rümmeli* and Guifu Zou*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c05293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c05293\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c05293","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

外延生长是将半导体集成到异质结构中的一种关键方法,为探索过渡金属二掺杂物(TMD)和包晶等尖端材料的电子和光电特性提供了有力的途径。然而,在 TMD 材料的顶部逐层生长面临着巨大的能量障碍,阻碍了包晶石原子在二维表面的吸附和成核。在这里,我们在 TMD 上外延生长了一种无机无铅包晶,并形成了范德华(vdW)异质结。我们的工作采用了单分子膜辅助生长策略,该策略可减小接触角,同时降低 Cs3Sb2Br9 表面成核的能量势垒。通过控制成核温度,我们实现了将 Cs3Sb2Br9 外延层的厚度从 30 纳米减少到约 4 纳米。在无机无铅包晶和 TMD 异质结领域,我们观察到了长达 9.9 ns 的层间激子寿命,约为层内激子寿命的 36 倍,这得益于直接外延生长带来的出色的层间耦合。我们的研究引入了一种单分子膜辅助生长策略,通过 vdW 外延生长扩展了材料的多样性,可能有助于未来涉及异质结的光电应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monomolecular Membrane-Assisted Growth of Antimony Halide Perovskite/MoS2 Van der Waals Epitaxial Heterojunctions with Long-Lived Interlayer Exciton

Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs3Sb2Br9 surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs3Sb2Br9 epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Flotation Coefficient Distributions of Lipid Nanoparticles by Sedimentation Velocity Analytical Ultracentrifugation. Thermal Activation of Anti-Stokes Photoluminescence in CsPbBr3 Perovskite Nanocrystals: The Role of Surface Polaron States. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. Wearable, Biocompatible, and Dual-Emission Ocular Multisensor Patch for Continuous Profiling of Fluoroquinolone Antibiotics in Tears. Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1