Karen H Watanabe, Suzanne W Dietrich, Yian Ding, Wenli Ma, James P Sluka, Mary B Zelinski
{"title":"多物种卵巢组织组学电子储存库(MOTHER)概述。","authors":"Karen H Watanabe, Suzanne W Dietrich, Yian Ding, Wenli Ma, James P Sluka, Mary B Zelinski","doi":"10.1093/biolre/ioae101","DOIUrl":null,"url":null,"abstract":"<p><p>The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overview of the Multispecies Ovary Tissue Histology Electronic Repository†.\",\"authors\":\"Karen H Watanabe, Suzanne W Dietrich, Yian Ding, Wenli Ma, James P Sluka, Mary B Zelinski\",\"doi\":\"10.1093/biolre/ioae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae101\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae101","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Overview of the Multispecies Ovary Tissue Histology Electronic Repository†.
The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.