Mater H Mahnashi, Mohammed Nahari, Hassan Almasoudi, Abdulaziz Alhasaniah, Sara Elgazwi, Mahrous A Abou-Salim
{"title":"新型 NO-TZDs 和基于三甲氧基查耳酮的 DHPMs:作为潜在 VEGFR-2 抑制剂的设计、合成和生物评估。","authors":"Mater H Mahnashi, Mohammed Nahari, Hassan Almasoudi, Abdulaziz Alhasaniah, Sara Elgazwi, Mahrous A Abou-Salim","doi":"10.1080/14756366.2024.2358934","DOIUrl":null,"url":null,"abstract":"<p><p>Novel series of nitric oxide-releasing thiazolidine-2,4-diones (<b>NO-TZD-3a-d,5,6</b>) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (<b>CDHPM-10a-g</b>) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and <b>CDHPM-10a-g</b> emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, <b>CDHPM-10e</b> and <b>CDHPM-10f</b> demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds <b>CDHPM-10a,b,d-f</b> showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid <b>CDHPM-10e</b> displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI<sub>50</sub> of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds <b>CDHPM-10a-g</b> were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog <b>CDHPM-10e</b> revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC<sub>50</sub> value of 0.11 µM. Also, <b>CDHPM-10e</b> could effectively induce Sub-G1-phase arrest and prompt apoptosis <i>via</i> caspase and p53-dependent mechanisms. Furthermore, <b>CDHPM-10e</b> revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that <b>CDHPM-10e</b> overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that <b>CDHPM-10e</b> met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2358934"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel NO-TZDs and trimethoxychalcone-based DHPMs: design, synthesis, and biological evaluation as potential VEGFR-2 inhibitors.\",\"authors\":\"Mater H Mahnashi, Mohammed Nahari, Hassan Almasoudi, Abdulaziz Alhasaniah, Sara Elgazwi, Mahrous A Abou-Salim\",\"doi\":\"10.1080/14756366.2024.2358934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel series of nitric oxide-releasing thiazolidine-2,4-diones (<b>NO-TZD-3a-d,5,6</b>) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (<b>CDHPM-10a-g</b>) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and <b>CDHPM-10a-g</b> emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, <b>CDHPM-10e</b> and <b>CDHPM-10f</b> demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds <b>CDHPM-10a,b,d-f</b> showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid <b>CDHPM-10e</b> displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI<sub>50</sub> of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds <b>CDHPM-10a-g</b> were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog <b>CDHPM-10e</b> revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC<sub>50</sub> value of 0.11 µM. Also, <b>CDHPM-10e</b> could effectively induce Sub-G1-phase arrest and prompt apoptosis <i>via</i> caspase and p53-dependent mechanisms. Furthermore, <b>CDHPM-10e</b> revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that <b>CDHPM-10e</b> overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that <b>CDHPM-10e</b> met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":\"39 1\",\"pages\":\"2358934\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2358934\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2358934","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel NO-TZDs and trimethoxychalcone-based DHPMs: design, synthesis, and biological evaluation as potential VEGFR-2 inhibitors.
Novel series of nitric oxide-releasing thiazolidine-2,4-diones (NO-TZD-3a-d,5,6) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (CDHPM-10a-g) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and CDHPM-10a-g emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, CDHPM-10e and CDHPM-10f demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds CDHPM-10a,b,d-f showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid CDHPM-10e displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI50 of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds CDHPM-10a-g were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog CDHPM-10e revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC50 value of 0.11 µM. Also, CDHPM-10e could effectively induce Sub-G1-phase arrest and prompt apoptosis via caspase and p53-dependent mechanisms. Furthermore, CDHPM-10e revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that CDHPM-10e overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that CDHPM-10e met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.