用镧对从深共晶溶剂中电沉积的镍基涂层进行微改性,以提高电催化性能和耐腐蚀性能

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-06-20 DOI:10.1016/j.matlet.2024.136892
V.S. Protsenko , O.D. Sukhatskyi , T.E. Butyrina , L.A. Frolova , S.A. Korniy
{"title":"用镧对从深共晶溶剂中电沉积的镍基涂层进行微改性,以提高电催化性能和耐腐蚀性能","authors":"V.S. Protsenko ,&nbsp;O.D. Sukhatskyi ,&nbsp;T.E. Butyrina ,&nbsp;L.A. Frolova ,&nbsp;S.A. Korniy","doi":"10.1016/j.matlet.2024.136892","DOIUrl":null,"url":null,"abstract":"<div><p>Electrodeposited nickel-based coatings microalloyed with lanthanum (up to approximately 1.75 wt%) were investigated. Electrodeposition was carried out using a deep eutectic solvent containing dissolved anhydrous salts of Ni(II) and Ce(III) as precursors. Electrochemical impedance spectroscopy results revealed that microalloying the chemical composition of coatings with lanthanum leads to a significant enhancement in electrocatalytic activity towards the hydrogen evolution reaction in an alkaline medium, as well as an improvement in corrosion resistance, compared to coatings not doped with lanthanum. These findings may be used in the development of high-performance electrocatalysts for hydrogen energy.</p></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromodification of nickel-based coatings electrodeposited from a deep eutectic solvent with lanthanum as a way to improve electrocatalytic performance and corrosion resistance\",\"authors\":\"V.S. Protsenko ,&nbsp;O.D. Sukhatskyi ,&nbsp;T.E. Butyrina ,&nbsp;L.A. Frolova ,&nbsp;S.A. Korniy\",\"doi\":\"10.1016/j.matlet.2024.136892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrodeposited nickel-based coatings microalloyed with lanthanum (up to approximately 1.75 wt%) were investigated. Electrodeposition was carried out using a deep eutectic solvent containing dissolved anhydrous salts of Ni(II) and Ce(III) as precursors. Electrochemical impedance spectroscopy results revealed that microalloying the chemical composition of coatings with lanthanum leads to a significant enhancement in electrocatalytic activity towards the hydrogen evolution reaction in an alkaline medium, as well as an improvement in corrosion resistance, compared to coatings not doped with lanthanum. These findings may be used in the development of high-performance electrocatalysts for hydrogen energy.</p></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24010310\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24010310","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了电沉积镍基涂层微合金化镧(最高约为 1.75 wt%)的情况。电沉积是以含有溶解的无水镍(II)和铈(III)盐的深共晶溶剂为前驱体进行的。电化学阻抗光谱结果表明,与未掺入镧的涂层相比,在涂层的化学成分中掺入镧可显著提高涂层在碱性介质中氢进化反应的电催化活性,并改善耐腐蚀性。这些发现可用于开发高性能的氢能电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micromodification of nickel-based coatings electrodeposited from a deep eutectic solvent with lanthanum as a way to improve electrocatalytic performance and corrosion resistance

Electrodeposited nickel-based coatings microalloyed with lanthanum (up to approximately 1.75 wt%) were investigated. Electrodeposition was carried out using a deep eutectic solvent containing dissolved anhydrous salts of Ni(II) and Ce(III) as precursors. Electrochemical impedance spectroscopy results revealed that microalloying the chemical composition of coatings with lanthanum leads to a significant enhancement in electrocatalytic activity towards the hydrogen evolution reaction in an alkaline medium, as well as an improvement in corrosion resistance, compared to coatings not doped with lanthanum. These findings may be used in the development of high-performance electrocatalysts for hydrogen energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Microstructural characterization and thermal stability of AlCrFeNiTi + Y2O3 high-entropy alloy nanocomposites prepared by mechanical alloying Study of nickel doping induced optical band gap modulation in ZnO nanorods Effect of cold metal transfer process on hardfacing of Inconel 718 over stainless steel 304 Modified polymethyl methacrylate as a sustainable medium for capturing carbon dioxide Discharge performance and thermal distribution optimization of thermally activated battery in high-temperature environment by phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1