气候变化和水库建设与运行引起的水温变化特征的量化和分类框架:在长江中游的应用

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-06-20 DOI:10.1002/hyp.15210
Xu Wang, Yong-Ming Shen
{"title":"气候变化和水库建设与运行引起的水温变化特征的量化和分类框架:在长江中游的应用","authors":"Xu Wang,&nbsp;Yong-Ming Shen","doi":"10.1002/hyp.15210","DOIUrl":null,"url":null,"abstract":"<p>Riverine water temperature (WT) is a crucial factor affecting habitat quality and ecological effect of aquatic ecosystems. To accurately quantify and classify WT variation features caused by climate change and reservoir construction and operation, a framework was developed that integrates multivariate vine copula model for accurately reconstructing the WT process and general evaluation indicators for comprehensively characterizing of WT variation. In this framework, month-wise R-vine copula models were employed to depict the multivariate dependence structure between WT and related hydrometeorological factors, and the change of WT process in the fluctuation range and thermal deviation was analogized as the change of simple harmonic wave in amplitude and phase. A testing-oriented application of this framework in Yichang section of the Yangtze River highlighted that climate change and the Three Gorges Reservoir (TGR) dominated or participated in the fluctuation range changing and phase deviation of different monthly WT processes, as the ratios of affected months were 1.08:1 and 1.25:1 during the construction phase, and 1:2 and 1:1.28 during the operation phase. WT process also exhibited diverse monthly variation trends during construction and operation phases of the TGR. Therefore, it is inappropriate to neglect the impact of the TGR construction phase and climate change on WT variation. The proposed framework achieved systematic quantification and attribution analysis of WT variation, thereby providing an enhanced understanding of the variation characteristics of river thermal regimes under the individual and combined effects of climate change and artificial reservoir. Considering the significant influence of WT variation on aquatic organism reproduction, the identification of the sources and categories of monthly WT variation can also serve as a foundation for future targeted thermal and hydrological regime regulation, aiming to protecting aquatic species and preventing biodiversity loss.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantification and classification framework for water temperature variation features induced by climate change and reservoir construction and operation: Application to the middle Yangtze River\",\"authors\":\"Xu Wang,&nbsp;Yong-Ming Shen\",\"doi\":\"10.1002/hyp.15210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Riverine water temperature (WT) is a crucial factor affecting habitat quality and ecological effect of aquatic ecosystems. To accurately quantify and classify WT variation features caused by climate change and reservoir construction and operation, a framework was developed that integrates multivariate vine copula model for accurately reconstructing the WT process and general evaluation indicators for comprehensively characterizing of WT variation. In this framework, month-wise R-vine copula models were employed to depict the multivariate dependence structure between WT and related hydrometeorological factors, and the change of WT process in the fluctuation range and thermal deviation was analogized as the change of simple harmonic wave in amplitude and phase. A testing-oriented application of this framework in Yichang section of the Yangtze River highlighted that climate change and the Three Gorges Reservoir (TGR) dominated or participated in the fluctuation range changing and phase deviation of different monthly WT processes, as the ratios of affected months were 1.08:1 and 1.25:1 during the construction phase, and 1:2 and 1:1.28 during the operation phase. WT process also exhibited diverse monthly variation trends during construction and operation phases of the TGR. Therefore, it is inappropriate to neglect the impact of the TGR construction phase and climate change on WT variation. The proposed framework achieved systematic quantification and attribution analysis of WT variation, thereby providing an enhanced understanding of the variation characteristics of river thermal regimes under the individual and combined effects of climate change and artificial reservoir. Considering the significant influence of WT variation on aquatic organism reproduction, the identification of the sources and categories of monthly WT variation can also serve as a foundation for future targeted thermal and hydrological regime regulation, aiming to protecting aquatic species and preventing biodiversity loss.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15210\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15210","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

河流水温(WT)是影响水生生态系统生境质量和生态效应的关键因素。为了对气候变化和水库建设运行引起的水温变化特征进行准确的量化和分类,本文建立了一个框架,将用于准确重构水温变化过程的多元藤状耦合模型和用于全面描述水温变化特征的一般评价指标整合在一起。在该框架中,采用月度 R-藤蔓 copula 模型来描述 WT 与相关水文气象因子之间的多元依赖结构,并将 WT 过程在波动范围和热偏差上的变化类比为简谐波在振幅和相位上的变化。该框架在长江宜昌段的试验结果表明,气候变化和三峡水库主导或参与了不同月度 WT 过程的波动范围变化和相位偏差,建设期受影响月数比分别为 1.08:1 和 1.25:1,运行期为 1:2 和 1:1.28。WT 过程在总干线的施工和运行阶段也呈现出不同的月变化趋势。因此,不宜忽视总干线施工阶段和气候变化对 WT 变化的影响。所提出的框架实现了对 WT 变化的系统量化和归因分析,从而加深了对气候变化和人工水库单独及联合影响下河流热力状态变化特征的理解。考虑到 WT 变化对水生生物繁殖的重要影响,确定月度 WT 变化的来源和类别也可作为未来有针对性地进行水热调控的基础,从而达到保护水生物种和防止生物多样性丧失的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantification and classification framework for water temperature variation features induced by climate change and reservoir construction and operation: Application to the middle Yangtze River

Riverine water temperature (WT) is a crucial factor affecting habitat quality and ecological effect of aquatic ecosystems. To accurately quantify and classify WT variation features caused by climate change and reservoir construction and operation, a framework was developed that integrates multivariate vine copula model for accurately reconstructing the WT process and general evaluation indicators for comprehensively characterizing of WT variation. In this framework, month-wise R-vine copula models were employed to depict the multivariate dependence structure between WT and related hydrometeorological factors, and the change of WT process in the fluctuation range and thermal deviation was analogized as the change of simple harmonic wave in amplitude and phase. A testing-oriented application of this framework in Yichang section of the Yangtze River highlighted that climate change and the Three Gorges Reservoir (TGR) dominated or participated in the fluctuation range changing and phase deviation of different monthly WT processes, as the ratios of affected months were 1.08:1 and 1.25:1 during the construction phase, and 1:2 and 1:1.28 during the operation phase. WT process also exhibited diverse monthly variation trends during construction and operation phases of the TGR. Therefore, it is inappropriate to neglect the impact of the TGR construction phase and climate change on WT variation. The proposed framework achieved systematic quantification and attribution analysis of WT variation, thereby providing an enhanced understanding of the variation characteristics of river thermal regimes under the individual and combined effects of climate change and artificial reservoir. Considering the significant influence of WT variation on aquatic organism reproduction, the identification of the sources and categories of monthly WT variation can also serve as a foundation for future targeted thermal and hydrological regime regulation, aiming to protecting aquatic species and preventing biodiversity loss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Changes in snow-dominated streamflow quantity and timing following an extensive wildfire in British Columbia Spatio-temporal wet snow dynamics from model simulations and remote sensing: A case study from the Rofental, Austria A novel framework for assessing the joint and relative impacts of precipitation and groundwater on ecological drought processes in Northwest China Evaluating input data sources for isotope-enabled rainfall-runoff models Long-term trends in mountain groundwater levels across Canada and the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1