从流量加权优化网络效率中发现复杂网络拓扑结构

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-06-21 DOI:10.1103/physrevx.14.021050
Sebastiano Bontorin, Giulia Cencetti, Riccardo Gallotti, Bruno Lepri, Manlio De Domenico
{"title":"从流量加权优化网络效率中发现复杂网络拓扑结构","authors":"Sebastiano Bontorin, Giulia Cencetti, Riccardo Gallotti, Bruno Lepri, Manlio De Domenico","doi":"10.1103/physrevx.14.021050","DOIUrl":null,"url":null,"abstract":"Transportation and distribution networks are a class of spatial networks that have been of interest in recent years. These networks are often characterized by the presence of complex structures such as central loops paired with peripheral branches, which can appear both in natural and manmade systems, such as subway and railway networks. In this study, we investigate the conditions for the emergence of these nontrivial topological structures in the context of human transportation in cities. We propose a simple model for spatial networks generation, where a network lattice acts as a planar substrate and edge speeds define an effective temporal distance which we aim to optimize and quantifies the efficiency in exploring the urban space. Complex network topologies can be recovered from the optimization of edges’ speeds and we study how the interplay between a flow probability between two nodes in space and the associated travel cost influences the resulting optimal network. In the perspective of urban transportation we simulate these flows by means of human mobility models to obtain origin-destination matrices. We find that when using simple lattices, the obtained optimal topologies transition from treelike structures to more regular networks, depending on the spatial range of flows. Remarkably, we find that branches paired to large loops structures appear as optimal structures when the network is optimized for an interplay between heterogeneous mobility patterns of small range travels and longer-range ones typical of commuting. Moreover, when congestion dynamics in traffic routing is considered, we study the emergence of additional edges from the tree structure to mitigate temporal delays. Finally, we show that our framework is able to recover the statistical spatial properties of the Greater London area subway network.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of Complex Network Topologies from Flow-Weighted Optimization of Network Efficiency\",\"authors\":\"Sebastiano Bontorin, Giulia Cencetti, Riccardo Gallotti, Bruno Lepri, Manlio De Domenico\",\"doi\":\"10.1103/physrevx.14.021050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transportation and distribution networks are a class of spatial networks that have been of interest in recent years. These networks are often characterized by the presence of complex structures such as central loops paired with peripheral branches, which can appear both in natural and manmade systems, such as subway and railway networks. In this study, we investigate the conditions for the emergence of these nontrivial topological structures in the context of human transportation in cities. We propose a simple model for spatial networks generation, where a network lattice acts as a planar substrate and edge speeds define an effective temporal distance which we aim to optimize and quantifies the efficiency in exploring the urban space. Complex network topologies can be recovered from the optimization of edges’ speeds and we study how the interplay between a flow probability between two nodes in space and the associated travel cost influences the resulting optimal network. In the perspective of urban transportation we simulate these flows by means of human mobility models to obtain origin-destination matrices. We find that when using simple lattices, the obtained optimal topologies transition from treelike structures to more regular networks, depending on the spatial range of flows. Remarkably, we find that branches paired to large loops structures appear as optimal structures when the network is optimized for an interplay between heterogeneous mobility patterns of small range travels and longer-range ones typical of commuting. Moreover, when congestion dynamics in traffic routing is considered, we study the emergence of additional edges from the tree structure to mitigate temporal delays. Finally, we show that our framework is able to recover the statistical spatial properties of the Greater London area subway network.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021050\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021050","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

运输和配送网络是近年来备受关注的一类空间网络。这些网络的特点通常是存在复杂的结构,如中心环路与外围分支配对,这些结构既可能出现在自然系统中,也可能出现在地铁和铁路网络等人造系统中。在本研究中,我们研究了在城市人类交通中出现这些非难拓扑结构的条件。我们提出了一个简单的空间网络生成模型,其中网络晶格充当平面基底,边缘速度定义了有效的时间距离,我们旨在优化和量化探索城市空间的效率。复杂的网络拓扑结构可以从边缘速度的优化中得到恢复,我们将研究空间中两个节点之间的流动概率与相关旅行成本之间的相互作用如何影响最终的最优网络。从城市交通的角度来看,我们通过人类流动模型模拟这些流动,从而获得出发地-目的地矩阵。我们发现,在使用简单网格时,所获得的最佳拓扑结构会从树状结构过渡到更规则的网络,这取决于流量的空间范围。值得注意的是,我们发现当网络针对小范围旅行和通勤中典型的长距离旅行之间的异质流动模式进行优化时,与大循环结构配对的分支会成为最优结构。此外,当考虑到交通路由中的拥堵动态时,我们研究了树状结构中出现的额外边,以缓解时间延迟。最后,我们展示了我们的框架能够恢复大伦敦地区地铁网络的统计空间属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence of Complex Network Topologies from Flow-Weighted Optimization of Network Efficiency
Transportation and distribution networks are a class of spatial networks that have been of interest in recent years. These networks are often characterized by the presence of complex structures such as central loops paired with peripheral branches, which can appear both in natural and manmade systems, such as subway and railway networks. In this study, we investigate the conditions for the emergence of these nontrivial topological structures in the context of human transportation in cities. We propose a simple model for spatial networks generation, where a network lattice acts as a planar substrate and edge speeds define an effective temporal distance which we aim to optimize and quantifies the efficiency in exploring the urban space. Complex network topologies can be recovered from the optimization of edges’ speeds and we study how the interplay between a flow probability between two nodes in space and the associated travel cost influences the resulting optimal network. In the perspective of urban transportation we simulate these flows by means of human mobility models to obtain origin-destination matrices. We find that when using simple lattices, the obtained optimal topologies transition from treelike structures to more regular networks, depending on the spatial range of flows. Remarkably, we find that branches paired to large loops structures appear as optimal structures when the network is optimized for an interplay between heterogeneous mobility patterns of small range travels and longer-range ones typical of commuting. Moreover, when congestion dynamics in traffic routing is considered, we study the emergence of additional edges from the tree structure to mitigate temporal delays. Finally, we show that our framework is able to recover the statistical spatial properties of the Greater London area subway network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Impact of Nuclear Motion on Light-Induced Bimolecular Interaction Dynamics Quantum Entanglement between Optical and Microwave Photonic Qubits Geometric Landscape Annealing as an Optimization Principle Underlying the Coherent Ising Machine Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations Theoretical Description of Pump-Probe Experiments in Charge-Density-Wave Materials out to Long Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1