二维拓扑链瑀片上金属化产生的超导电性

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-06-21 DOI:10.1103/physrevx.14.021051
Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu
{"title":"二维拓扑链瑀片上金属化产生的超导电性","authors":"Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu","doi":"10.1103/physrevx.14.021051","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi mathvariant=\"normal\">T</mi></mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow></msub><mtext>−</mtext><msub><mrow><mi>WTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><msup><mrow><mi mathvariant=\"normal\">T</mi></mrow><mrow><mo>′</mo></mrow></msup><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi mathvariant=\"normal\">H</mi><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"37 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides\",\"authors\":\"Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu\",\"doi\":\"10.1103/physrevx.14.021051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mrow><mi mathvariant=\\\"normal\\\">T</mi></mrow><mrow><mi mathvariant=\\\"normal\\\">d</mi></mrow></msub><mtext>−</mtext><msub><mrow><mi>WTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><msup><mrow><mi mathvariant=\\\"normal\\\">T</mi></mrow><mrow><mo>′</mo></mrow></msup><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn><mi mathvariant=\\\"normal\\\">H</mi><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021051\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021051","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)过渡金属二掺杂物(TMDs)是一类用途广泛的量子材料,在纳米电子学、光学设备、拓扑和相关量子物质等多个领域都有应用。定制 TMDs 的电子特性对其在多个方向的应用至关重要。在这里,我们报告了一种高度可控和均匀的片上二维金属化工艺将一类原子级薄的 TMD 转换成了坚固的超导体,这是一种不属于任何起始材料的特性。作为示例,我们展示了如何将超导性引入一类二维空气敏感拓扑 TMD,包括 Td-WTe2、1T′-MoTe2 和 2H-MoTe2 的单层,以及它们的天然和扭曲双层,并用超薄钯层进行金属化。众所周知,这类 TMD 表现出奇妙的拓扑相,包括拓扑绝缘体、Weyl 半金属和分数切尔绝缘体。这种独特的高质量二维金属化工艺是基于我们最近对二维平面内长距离、非费克质量传输和化学性质的研究成果,这种传输和化学性质发生在相对较低的温度下和完全被惰性绝缘层封装的器件中。我们的研究成果与范德华堆栈的现有纳米制造技术高度兼容,为在一类相关二维材料中设计和制造超导和拓扑相提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides
Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of TdWTe2, 1TMoTe2, and 2HMoTe2, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Information Arbitrage in Bipartite Heat Engines Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1