利用在线相变捕集-超临界流体萃取-层析-四极杆飞行时间串联质谱法对 1 型糖尿病大鼠进行脂质组学研究

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2024-07-05 Epub Date: 2024-06-23 DOI:10.1021/acs.jproteome.4c00337
Binhong He, Ting Zhou, Jiaqi Liu
{"title":"利用在线相变捕集-超临界流体萃取-层析-四极杆飞行时间串联质谱法对 1 型糖尿病大鼠进行脂质组学研究","authors":"Binhong He, Ting Zhou, Jiaqi Liu","doi":"10.1021/acs.jproteome.4c00337","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO<sub>2</sub> from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipidomics Study of Type 1 Diabetic Rats Using Online Phase Transition Trapping-Supercritical Fluid Extraction-Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.\",\"authors\":\"Binhong He, Ting Zhou, Jiaqi Liu\",\"doi\":\"10.1021/acs.jproteome.4c00337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO<sub>2</sub> from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00337\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00337","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于色谱-质谱联用技术的脂质组学是阐明脂质功能障碍机制的重要工具,被广泛应用于研究疾病机制和确定生物标志物。然而,生物基质中低丰度脂质的检测以及繁琐的操作步骤使全面的脂质组学分析变得复杂,因此有必要开发高灵敏度、环境友好型和自动化的方法。本研究开发了一种在线相变捕集-超临界流体萃取-色谱-质谱联用(PTT-SFEC-MS/MS)方法,并成功应用于 1 型糖尿病(T1D)大鼠的血浆脂质组学分析。PTT策略通过将二氧化碳从超临界状态转化为气态,在柱头捕获整个提取物,从而防止了峰值扩散,增强了峰形以实现精确定量,并在无任何样品损失的情况下提高了灵敏度。该方法仅使用 5 μL 血浆,在 27 分钟内完成样品提取、分离和检测。最终,在 T1D 大鼠血浆中鉴定出 77 种不同的脂质,包括甘油磷脂、鞘脂和甘油三酯。结果表明,疾病的进展可能与甘油磷脂和鞘脂代谢的改变有关。我们的研究成果展示了一种绿色、高效、自动化的生物样本脂质组学分析方法,为了解 T1D 的发病机制和诊断提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipidomics Study of Type 1 Diabetic Rats Using Online Phase Transition Trapping-Supercritical Fluid Extraction-Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe. Identification of Candidate Protein Biomarkers Associated with Domoic Acid Toxicosis in Cerebrospinal Fluid of California Sea Lions (Zalophus californianus). Meta-Analysis of Rice Phosphoproteomics Data to Understand Variation in Cell Signaling Across the Rice Pan-Genome. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. Streamlining the Analysis of Proteins from Snake Venom.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1