NagZ 通过未知功能基因 ECL_03795 发挥作用,从而调节衣藻埃希氏菌的毒力。

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2024-12-01 Epub Date: 2024-06-24 DOI:10.1080/21505594.2024.2367652
Xianggui Yang, Jun Zeng, Dan Wang, Qin Zhou, Xuejing Yu, Zhenguo Wang, Tingting Bai, Guangxin Luan, Ying Xu
{"title":"NagZ 通过未知功能基因 ECL_03795 发挥作用,从而调节衣藻埃希氏菌的毒力。","authors":"Xianggui Yang, Jun Zeng, Dan Wang, Qin Zhou, Xuejing Yu, Zhenguo Wang, Tingting Bai, Guangxin Luan, Ying Xu","doi":"10.1080/21505594.2024.2367652","DOIUrl":null,"url":null,"abstract":"<p><p>β-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent β-lactam resistance in <i>Enterobacter cloacae</i>. However, NagZ's role in the virulence of <i>E. cloacae</i> remains unclear. Our study, incorporating data on mouse and <i>Galleria mellonella</i> larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of <i>E. cloacae</i> following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197897/pdf/","citationCount":"0","resultStr":"{\"title\":\"NagZ modulates the virulence of <i>E. cloacae</i> by acting through the gene of unknown function, ECL_03795.\",\"authors\":\"Xianggui Yang, Jun Zeng, Dan Wang, Qin Zhou, Xuejing Yu, Zhenguo Wang, Tingting Bai, Guangxin Luan, Ying Xu\",\"doi\":\"10.1080/21505594.2024.2367652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent β-lactam resistance in <i>Enterobacter cloacae</i>. However, NagZ's role in the virulence of <i>E. cloacae</i> remains unclear. Our study, incorporating data on mouse and <i>Galleria mellonella</i> larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of <i>E. cloacae</i> following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2024.2367652\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2367652","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

β-N-乙酰葡糖苷酶(NagZ)是一种细胞膜葡糖苷酶,在肽聚糖循环中发挥着关键作用。先前的研究表明,NagZ 基因敲除可显著消除泄殖腔肠杆菌对 AmpC 依赖性 β-内酰胺类药物的耐药性。然而,NagZ 在泄殖腔肠杆菌毒力中的作用仍不清楚。我们的研究结合了小鼠和沙门氏菌幼虫死亡率、炎症标志物和组织病理学检查的数据,发现在敲除 NagZ 后,泄殖腔肠杆菌的毒力大大降低。转录组测序发现,NagZ基因敲除菌株与野生型菌株的基因表达存在差异,尤其是在核苷酸代谢途径中。进一步的研究表明,NagZ 基因缺失导致环二鸟苷单磷酸(c-di-GMP)水平显著增加。此外,转录组测序和 RT-qPCR 证实 ECL_03795 的表达存在显著差异,该基因的功能不明,但由于其 EAL 结构域具有磷酸二酯酶活性,因此推测其参与了 c-di-GMP 代谢。有趣的是,在 ECL_03795 基因敲除菌株中观察到毒力明显下降,而在与 ECL_03795 基因互补后毒力得到恢复。因此,我们的研究表明,NagZ对毒力的作用部分是通过ECL_03795→c-di-GMP途径介导的,这为开发新型疗法提供了启示,并有力地支持了人们对开发高效NagZ抑制剂的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NagZ modulates the virulence of E. cloacae by acting through the gene of unknown function, ECL_03795.

β-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent β-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Dry eye disease caused by viral infection: Past, present and future. The host protein CALCOCO2 interacts with bovine viral diarrhoea virus Npro, inhibiting type I interferon production and thereby promoting viral replication. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1