{"title":"外包控制要求控制复杂。","authors":"Carlotta Langer, Nihat Ay","doi":"10.1162/artl_a_00443","DOIUrl":null,"url":null,"abstract":"<p><p>An embodied agent influences its environment and is influenced by it. We use the sensorimotor loop to model these interactions and quantify the information flows in the system by information-theoretic measures. This includes a measure for the interaction among the agent's body and its environment, often referred to as morphological computation. Additionally, we examine the controller complexity, which can be seen in the context of the integrated information theory of consciousness. Applying this framework to an experimental setting with simulated agents allows us to analyze the interaction between an agent and its environment, as well as the complexity of its controller. Previous research revealed that a morphology adapted well to a task can substantially reduce the required complexity of the controller. In this work, we observe that the agents first have to understand the relevant dynamics of the environment to interact well with their surroundings. Hence an increased controller complexity can facilitate a better interaction between an agent's body and its environment.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-22"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outsourcing Control Requires Control Complexity.\",\"authors\":\"Carlotta Langer, Nihat Ay\",\"doi\":\"10.1162/artl_a_00443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An embodied agent influences its environment and is influenced by it. We use the sensorimotor loop to model these interactions and quantify the information flows in the system by information-theoretic measures. This includes a measure for the interaction among the agent's body and its environment, often referred to as morphological computation. Additionally, we examine the controller complexity, which can be seen in the context of the integrated information theory of consciousness. Applying this framework to an experimental setting with simulated agents allows us to analyze the interaction between an agent and its environment, as well as the complexity of its controller. Previous research revealed that a morphology adapted well to a task can substantially reduce the required complexity of the controller. In this work, we observe that the agents first have to understand the relevant dynamics of the environment to interact well with their surroundings. Hence an increased controller complexity can facilitate a better interaction between an agent's body and its environment.</p>\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/artl_a_00443\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00443","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An embodied agent influences its environment and is influenced by it. We use the sensorimotor loop to model these interactions and quantify the information flows in the system by information-theoretic measures. This includes a measure for the interaction among the agent's body and its environment, often referred to as morphological computation. Additionally, we examine the controller complexity, which can be seen in the context of the integrated information theory of consciousness. Applying this framework to an experimental setting with simulated agents allows us to analyze the interaction between an agent and its environment, as well as the complexity of its controller. Previous research revealed that a morphology adapted well to a task can substantially reduce the required complexity of the controller. In this work, we observe that the agents first have to understand the relevant dynamics of the environment to interact well with their surroundings. Hence an increased controller complexity can facilitate a better interaction between an agent's body and its environment.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.