Weiguang Jiang , Yuhan Liu , Ke Chen , Yihong Liu , Lieyun Ding
{"title":"不安全起重作业预警:数字孪生与知识图谱的整合","authors":"Weiguang Jiang , Yuhan Liu , Ke Chen , Yihong Liu , Lieyun Ding","doi":"10.1016/j.dibe.2024.100490","DOIUrl":null,"url":null,"abstract":"<div><p>Unsafe hoisting operations have been consistently associated with numerous safety incidents involving tower cranes. Currently, the predominant measures to mitigate these operations center around comprehensive training and education, emphasizing standardized protocols prior to hoisting activities. Despite concerted efforts in this direction, a conspicuous research gap persists in early-warning mechanisms during the construction phase. This paper aims to address this gap by proposing an innovative early-warning methodology, inspired by the principles of digital twin and knowledge graph. We firstly introduce a digital twin framework designed to mirror the real-time operational status of the tower crane. This framework enables the immediate detection of deviations or infractions as they occur. Subsequently, we develop a knowledge graph capable of promptly identifying unsafe hoisting operations by leveraging real-time data obtained from the digital twin. To validate the efficacy of our proposed methodology, we construct a scaled-down replica of a tower crane and establish a tailored digital twin system. The findings of a series of experimental trials prominently underscore the system's capability to generate timely alerts in response to unsafe hoisting operations while maintaining an impressively low rate of false alarms.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100490"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001716/pdfft?md5=78e0a579704c2ca54ce3926fff97dfc4&pid=1-s2.0-S2666165924001716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Early-warning of unsafe hoisting operations: An integration of digital twin and knowledge graph\",\"authors\":\"Weiguang Jiang , Yuhan Liu , Ke Chen , Yihong Liu , Lieyun Ding\",\"doi\":\"10.1016/j.dibe.2024.100490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unsafe hoisting operations have been consistently associated with numerous safety incidents involving tower cranes. Currently, the predominant measures to mitigate these operations center around comprehensive training and education, emphasizing standardized protocols prior to hoisting activities. Despite concerted efforts in this direction, a conspicuous research gap persists in early-warning mechanisms during the construction phase. This paper aims to address this gap by proposing an innovative early-warning methodology, inspired by the principles of digital twin and knowledge graph. We firstly introduce a digital twin framework designed to mirror the real-time operational status of the tower crane. This framework enables the immediate detection of deviations or infractions as they occur. Subsequently, we develop a knowledge graph capable of promptly identifying unsafe hoisting operations by leveraging real-time data obtained from the digital twin. To validate the efficacy of our proposed methodology, we construct a scaled-down replica of a tower crane and establish a tailored digital twin system. The findings of a series of experimental trials prominently underscore the system's capability to generate timely alerts in response to unsafe hoisting operations while maintaining an impressively low rate of false alarms.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"19 \",\"pages\":\"Article 100490\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001716/pdfft?md5=78e0a579704c2ca54ce3926fff97dfc4&pid=1-s2.0-S2666165924001716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001716\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001716","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Early-warning of unsafe hoisting operations: An integration of digital twin and knowledge graph
Unsafe hoisting operations have been consistently associated with numerous safety incidents involving tower cranes. Currently, the predominant measures to mitigate these operations center around comprehensive training and education, emphasizing standardized protocols prior to hoisting activities. Despite concerted efforts in this direction, a conspicuous research gap persists in early-warning mechanisms during the construction phase. This paper aims to address this gap by proposing an innovative early-warning methodology, inspired by the principles of digital twin and knowledge graph. We firstly introduce a digital twin framework designed to mirror the real-time operational status of the tower crane. This framework enables the immediate detection of deviations or infractions as they occur. Subsequently, we develop a knowledge graph capable of promptly identifying unsafe hoisting operations by leveraging real-time data obtained from the digital twin. To validate the efficacy of our proposed methodology, we construct a scaled-down replica of a tower crane and establish a tailored digital twin system. The findings of a series of experimental trials prominently underscore the system's capability to generate timely alerts in response to unsafe hoisting operations while maintaining an impressively low rate of false alarms.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.