{"title":"双边变压器三维平面恢复","authors":"Fei Ren , Chunhua Liao , Zhina Xie","doi":"10.1016/j.gmod.2024.101221","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"134 ","pages":"Article 101221"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000092/pdfft?md5=b6e8dcdf8c08f479bd4a08431705f4a8&pid=1-s2.0-S1524070324000092-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bilateral transformer 3D planar recovery\",\"authors\":\"Fei Ren , Chunhua Liao , Zhina Xie\",\"doi\":\"10.1016/j.gmod.2024.101221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"134 \",\"pages\":\"Article 101221\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000092/pdfft?md5=b6e8dcdf8c08f479bd4a08431705f4a8&pid=1-s2.0-S1524070324000092-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000092\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
近年来,基于深度学习的单幅图像三维平面恢复方法取得了显著进展,但大部分研究都集中在整体平面分割性能上,而不是小尺度平面分割的精度上。为了解决小目标物体特征提取过程中的特征丢失问题,提出了一种基于双边变换器的三维平面恢复方法。双侧网络分支通过不同尺度采样捕捉丰富的小目标物目标特征,分别用于检测平面区域和非平面区域。此外,利用变异信息的丢失来共享双边网络的参数,实现了双边网络输出的一致性,缓解了小目标物体特征丢失的问题。该方法在 Scannet 和 Nyu V2 数据集上进行了验证,各种评价指标均优于目前流行的算法,证明了该方法在三维平面恢复方面的有效性。
In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.