基于固液固摩擦的有机染料接触催化降解技术

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-19 DOI:10.1016/j.nanoen.2024.109910
Lu-Yao Wang , Jin-Hua Liu , Meng-Nan Liu, Fang Yin, Zi-Chen Yu, Meng-Jie Li, Yang Zhang, Hong-Di Zhang, Jun Zhang, Yun-Ze Long
{"title":"基于固液固摩擦的有机染料接触催化降解技术","authors":"Lu-Yao Wang ,&nbsp;Jin-Hua Liu ,&nbsp;Meng-Nan Liu,&nbsp;Fang Yin,&nbsp;Zi-Chen Yu,&nbsp;Meng-Jie Li,&nbsp;Yang Zhang,&nbsp;Hong-Di Zhang,&nbsp;Jun Zhang,&nbsp;Yun-Ze Long","doi":"10.1016/j.nanoen.2024.109910","DOIUrl":null,"url":null,"abstract":"<div><p>Energy and environmental challenges stand as pivotal issues in contemporary society. This study presents a novel solid-liquid-solid contact-electro-catalytic (CEC) approach based on n-type and p-type silicon wafers for the degradation of organic dyes such as methylene blue, rhodamine B, eriochrome black T and crystal violet. Notably, under indoor light conditions, the degradation efficiency of 5 ppm methylene blue can achieve an exceptional 96.25 % within a brief 18-min-friction treatment. Our investigation elucidates that the catalytic mechanism arises from the synergistic interplay between electron transitions induced by the tribovoltaic effect and electron transfer facilitated by CEC. Furthermore, the solid-liquid-solid CEC exhibits remarkable attributes such as complete recyclability and reusability, thereby opening new avenues for advancements in solid-liquid-solid CEC research.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact-electro-catalytic degradation of organic dyes based on solid-liquid-solid friction\",\"authors\":\"Lu-Yao Wang ,&nbsp;Jin-Hua Liu ,&nbsp;Meng-Nan Liu,&nbsp;Fang Yin,&nbsp;Zi-Chen Yu,&nbsp;Meng-Jie Li,&nbsp;Yang Zhang,&nbsp;Hong-Di Zhang,&nbsp;Jun Zhang,&nbsp;Yun-Ze Long\",\"doi\":\"10.1016/j.nanoen.2024.109910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy and environmental challenges stand as pivotal issues in contemporary society. This study presents a novel solid-liquid-solid contact-electro-catalytic (CEC) approach based on n-type and p-type silicon wafers for the degradation of organic dyes such as methylene blue, rhodamine B, eriochrome black T and crystal violet. Notably, under indoor light conditions, the degradation efficiency of 5 ppm methylene blue can achieve an exceptional 96.25 % within a brief 18-min-friction treatment. Our investigation elucidates that the catalytic mechanism arises from the synergistic interplay between electron transitions induced by the tribovoltaic effect and electron transfer facilitated by CEC. Furthermore, the solid-liquid-solid CEC exhibits remarkable attributes such as complete recyclability and reusability, thereby opening new avenues for advancements in solid-liquid-solid CEC research.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221128552400658X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221128552400658X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能源和环境挑战是当代社会的关键问题。本研究提出了一种基于 n 型和 p 型硅晶片的新型固液固接触催化(CEC)方法,用于降解亚甲基蓝、罗丹明 B、麦角黑 T 和结晶紫等有机染料。值得注意的是,在室内光照条件下,5 ppm 亚甲基蓝的降解效率在短短 18 分钟的摩擦处理中就达到了 96.25%。我们的研究阐明,催化机理源于摩擦光伏效应诱导的电子跃迁和 CEC 促进的电子转移之间的协同作用。此外,固-液-固 CEC 还具有完全可回收和可重复使用等显著特性,从而为固-液-固 CEC 研究的进步开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contact-electro-catalytic degradation of organic dyes based on solid-liquid-solid friction

Energy and environmental challenges stand as pivotal issues in contemporary society. This study presents a novel solid-liquid-solid contact-electro-catalytic (CEC) approach based on n-type and p-type silicon wafers for the degradation of organic dyes such as methylene blue, rhodamine B, eriochrome black T and crystal violet. Notably, under indoor light conditions, the degradation efficiency of 5 ppm methylene blue can achieve an exceptional 96.25 % within a brief 18-min-friction treatment. Our investigation elucidates that the catalytic mechanism arises from the synergistic interplay between electron transitions induced by the tribovoltaic effect and electron transfer facilitated by CEC. Furthermore, the solid-liquid-solid CEC exhibits remarkable attributes such as complete recyclability and reusability, thereby opening new avenues for advancements in solid-liquid-solid CEC research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1