通过人工智能驱动的飞行员和空中交通管制员心理健康管理提升航空安全。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-08-01 Epub Date: 2024-06-25 DOI:10.1089/cyber.2023.0737
Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold
{"title":"通过人工智能驱动的飞行员和空中交通管制员心理健康管理提升航空安全。","authors":"Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold","doi":"10.1089/cyber.2023.0737","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Aviation Safety through AI-Driven Mental Health Management for Pilots and Air Traffic Controllers.\",\"authors\":\"Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold\",\"doi\":\"10.1089/cyber.2023.0737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1089/cyber.2023.0737\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1089/cyber.2023.0737","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了飞行员和空中交通管制员(ATC)面临的心理健康挑战,他们紧张的职业生活可能会对全球飞行安全和安保造成负面影响。心理健康障碍对他们的飞行表现造成的不利影响会带来特别的安全风险,尤其是在突发意外惊吓情况下。因此,及早发现、预测和预防飞行员和空管人员(尤其是高风险人群)的心理健康状况恶化,对于最大限度地减少人为因素导致的潜在空难事件至关重要。人工智能(AI)领域的最新研究表明,机器学习和深度学习、边缘计算和云计算、虚拟现实和可穿戴多模态生理传感器在监测和预测心理健康疾病方面具有巨大潜力。对飞行员和空管员的生理、认知和行为状态进行纵向监测和分析,有助于预测有可能患上未披露或新出现的心理健康疾病的个人。利用人工智能工具和方法来识别和选择这些人进行预防性心理健康培训和干预,可能是防止因人为因素和相关心理健康问题造成潜在空难事故的一种有前途的有效方法。基于这些见解,文章主张在现代航空中利用人工智能工具和技术设计一个多学科心理保健生态系统,以促进更高效和有效的心理健康管理,从而提高飞行安全和安保标准。这个拟议的生态系统需要多学科专家的合作,包括心理学家、神经科学家、生理学家、精神病学家等,以应对现代航空中的这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Aviation Safety through AI-Driven Mental Health Management for Pilots and Air Traffic Controllers.

This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1