Yana R Panikratova, Alexander S Tomyshev, Ekaterina G Abdullina, Georgiy I Rodionov, Andrey Yu Arkhipov, Denis V Tikhonov, Olga V Bozhko, Vasily G Kaleda, Valeria B Strelets, Irina S Lebedeva
{"title":"精神分裂症患者大脑结构老化的静息状态功能连接相关性。","authors":"Yana R Panikratova, Alexander S Tomyshev, Ekaterina G Abdullina, Georgiy I Rodionov, Andrey Yu Arkhipov, Denis V Tikhonov, Olga V Bozhko, Vasily G Kaleda, Valeria B Strelets, Irina S Lebedeva","doi":"10.1007/s00406-024-01837-5","DOIUrl":null,"url":null,"abstract":"<p><p>A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.</p>","PeriodicalId":11822,"journal":{"name":"European Archives of Psychiatry and Clinical Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resting-state functional connectivity correlates of brain structural aging in schizophrenia.\",\"authors\":\"Yana R Panikratova, Alexander S Tomyshev, Ekaterina G Abdullina, Georgiy I Rodionov, Andrey Yu Arkhipov, Denis V Tikhonov, Olga V Bozhko, Vasily G Kaleda, Valeria B Strelets, Irina S Lebedeva\",\"doi\":\"10.1007/s00406-024-01837-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.</p>\",\"PeriodicalId\":11822,\"journal\":{\"name\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00406-024-01837-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Psychiatry and Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00406-024-01837-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Resting-state functional connectivity correlates of brain structural aging in schizophrenia.
A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.
期刊介绍:
The original papers published in the European Archives of Psychiatry and Clinical Neuroscience deal with all aspects of psychiatry and related clinical neuroscience.
Clinical psychiatry, psychopathology, epidemiology as well as brain imaging, neuropathological, neurophysiological, neurochemical and moleculargenetic studies of psychiatric disorders are among the topics covered.
Thus both the clinician and the neuroscientist are provided with a handy source of information on important scientific developments.