杂交链式反应与蛋白结合扩增相结合,用于细胞内 mRNA 的长期成像:避免信号波动。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-06-26 DOI:10.1021/acs.analchem.4c01992
Yibo Zhou*, Huiqiu Shi, Xinchao Xia, Sheng Yang*, Junbin Li, Zhihe Qing, Jing Zheng and Ronghua Yang, 
{"title":"杂交链式反应与蛋白结合扩增相结合,用于细胞内 mRNA 的长期成像:避免信号波动。","authors":"Yibo Zhou*,&nbsp;Huiqiu Shi,&nbsp;Xinchao Xia,&nbsp;Sheng Yang*,&nbsp;Junbin Li,&nbsp;Zhihe Qing,&nbsp;Jing Zheng and Ronghua Yang,&nbsp;","doi":"10.1021/acs.analchem.4c01992","DOIUrl":null,"url":null,"abstract":"<p >Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore–protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Hybridization Chain Reaction and Protein-Binding Amplification for Long-Term Imaging of Intracellular mRNA: Avoiding Signal Fluctuation\",\"authors\":\"Yibo Zhou*,&nbsp;Huiqiu Shi,&nbsp;Xinchao Xia,&nbsp;Sheng Yang*,&nbsp;Junbin Li,&nbsp;Zhihe Qing,&nbsp;Jing Zheng and Ronghua Yang,&nbsp;\",\"doi\":\"10.1021/acs.analchem.4c01992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore–protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c01992\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c01992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于杂交链反应(HCR)的扩增纳米探针已被广泛用于检测细胞内低丰度 mRNA。然而,用荧光团装饰形成的链状组装物会被内源性酶迅速降解,导致无法进行长期荧光成像。为解决这一问题,本文交流了一种将 HCR 与蛋白质结合信号放大(HPSA)相结合的复合信号放大策略,以避免信号波动,实现 mRNA 的原位成像。与传统的基于 HCR 的纳米探针(HCR-nanoprobe)不同的是,HCR 被用作信号触发模式,放大信号产生于细胞内荧光团与蛋白质的原位结合,可以长时间保持信号的高稳定性。作为原理验证,我们构建了一种基于 HPSA 的纳米信标(HPSA-nanobeacon)来检测 TK1 mRNA。利用双信号放大模式的优势,在 HepG2 细胞中灵敏地检测到了内源性 TK1 mRNA,且荧光信号可维持 8 小时以上。这项工作的尝试为目前的信号放大策略提供了一种新的选择,可用于感知高稳定性的核酸靶标,大大提高了细胞内分子信息的获取能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of Hybridization Chain Reaction and Protein-Binding Amplification for Long-Term Imaging of Intracellular mRNA: Avoiding Signal Fluctuation

Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore–protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
A Tunable Threshold Colorimetric DNA Logic Gate for Intuitive Assessment of Chemical Contaminant Exceedance. Accurate Collisional Cross Section Measurement by Multipass Cyclic Ion Mobility Spectrometry. CuInS2/Red Phosphorus Nanosheet Interleaved Heterostructures with Improved Interfacial Charge Transfer for Photoelectrochemical Aptasensing. Dual-Mode Fluorescent/Intelligent Lateral Flow Immunoassay Based on Machine Learning Algorithm for Ultrasensitive Analysis of Chloroacetamide Herbicides. Enhancing Kinase Activity Detection with a Programmable Lanthanide Metal-Organic Framework via ATP-to-ADP Conversion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1