Vasiliki Keramari, Sotiria G Papadimou, Evangelia E Golia, Stella Girousi
{"title":"铋膜和dsDNA修饰电极表面是分析土壤中重金属的理想(生物)传感器。","authors":"Vasiliki Keramari, Sotiria G Papadimou, Evangelia E Golia, Stella Girousi","doi":"10.3390/bios14060310","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils.\",\"authors\":\"Vasiliki Keramari, Sotiria G Papadimou, Evangelia E Golia, Stella Girousi\",\"doi\":\"10.3390/bios14060310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14060310\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14060310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
重金属是空气、水和土壤中特别常见的污染物。它们存在于城市和农村环境、陆地和海洋生态系统中,由于不易降解、长期保持几乎不变以及生物累积,因此造成了严重的环境问题。金属的检测,特别是定量需要一个系统的过程。由于金属含量存在季节性变化,因此有必要进行定期监测。因此,亟需快速、低成本的金属测定方法。在本研究中,我们将吸收光谱法与灵敏的伏安法进行了比较和分析验证,后者使用镀铋膜电极表面,并采用剥离伏安法。原子吸收光谱法(AAS)是一种成熟的分析技术,而阳极剥离伏安法(ASV)在复杂样品基质(如土壤样品)中的适用性目前尚不清楚。本研究对这一样品处理难题进行了调查。结果表明,AAS 和 ASV 方法的相关性令人满意,并表明土壤中的金属浓度低于限值,但呈上升趋势。因此,对城市综合体中的金属含量进行连续监测是必要的,也是非常重要的。使用剥离伏安法(SWASV)石墨炉技术时,镉(Cd)的检测限比使用原子吸收光谱法(AAS)时的检测限低。然而,在使用火焰原子吸收光谱法(flame-AAS)时,与使用剥离伏安法(SWASV)得出的值相比,测量结果往往会高估镉的浓度。这凸显了这两种镉检测分析方法在灵敏度和准确性上的差异。SWASV 方法的优点是成本更低,速度更快,可以同时测定地中海土壤中可能存在的各种重金属浓度。此外,根据鸟嘌呤的氧化峰,建议使用 dsDNA 生物传感器来区分铜(I)和铜(II),腺嘌呤残基可用于土壤中铜的氧化还原标样分析,这是一个非常重要的问题。
Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils.
Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.