所有人?在初级保健住院医师二次数据分析研究培训模块中使用 "我们所有人 "研究员工作台遇到的限制。

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-06-25 DOI:10.1093/jamia/ocae162
Fred Willie Zametkin LaPolla, Marco Barber Grossi, Sharon Chen, Tai Wei Guo, Kathryn Havranek, Olivia Jebb, Minh Thu Nguyen, Sneha Panganamamula, Noah Smith, Shree Sundaresh, Jonathan Yu, Gabrielle Mayer
{"title":"所有人?在初级保健住院医师二次数据分析研究培训模块中使用 \"我们所有人 \"研究员工作台遇到的限制。","authors":"Fred Willie Zametkin LaPolla, Marco Barber Grossi, Sharon Chen, Tai Wei Guo, Kathryn Havranek, Olivia Jebb, Minh Thu Nguyen, Sneha Panganamamula, Noah Smith, Shree Sundaresh, Jonathan Yu, Gabrielle Mayer","doi":"10.1093/jamia/ocae162","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The goal of this case report is to detail experiences and challenges experienced in the training of Primary Care residents in secondary analysis using All of Us Researcher Workbench. At our large, urban safety net hospital, Primary Care/Internal Medicine residents in their third year undergo a research intensive block, the Research Practicum, where they work as a team to conduct secondary data analysis on a dataset with faculty facilitation. In 2023, this research block focused on use of the All of Us Researcher Workbench for secondary data analysis.</p><p><strong>Materials and methods: </strong>Two groups of 5 residents underwent training to access the All of Us Researcher Workbench, and each group explored available data with a faculty facilitator and generated original research questions. Two blocks of residents successfully completed their research blocks and created original presentations on \"social isolation and A1C\" levels and \"medical discrimination and diabetes management.\"</p><p><strong>Results: </strong>Departmental faculty were satisfied with the depth of learning and data exploration. In focus groups, some residents noted that for those without interest in performing research, the activity felt extraneous to their career goals, while others were glad for the opportunity to publish. In both blocks, residents highlighted dissatisfaction with the degree to which the All of Us Researcher Workbench was representative of patients they encounter in a large safety net hospital.</p><p><strong>Discussion: </strong>Using the All of Us Researcher Workbench provided residents with an opportunity to explore novel questions in a massive data source. Many residents however noted that because the population described in the All of Us Researcher Workbench appeared to be more highly educated and less racially diverse than patients they encounter in their practice, research may be hard to generalize in a community health context. Additionally, given that the data required knowledge of 1 of 2 code-based data analysis languages (R or Python) and work within an idiosyncratic coding environment, residents were heavily reliant on a faculty facilitator to assist with analysis.</p><p><strong>Conclusion: </strong>Using the All of Us Researcher Workbench for research training allowed residents to explore novel questions and gain first-hand exposure to opportunities and challenges in secondary data analysis.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All of whom? Limitations encountered using All of Us Researcher Workbench in a Primary Care residents secondary data analysis research training block.\",\"authors\":\"Fred Willie Zametkin LaPolla, Marco Barber Grossi, Sharon Chen, Tai Wei Guo, Kathryn Havranek, Olivia Jebb, Minh Thu Nguyen, Sneha Panganamamula, Noah Smith, Shree Sundaresh, Jonathan Yu, Gabrielle Mayer\",\"doi\":\"10.1093/jamia/ocae162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The goal of this case report is to detail experiences and challenges experienced in the training of Primary Care residents in secondary analysis using All of Us Researcher Workbench. At our large, urban safety net hospital, Primary Care/Internal Medicine residents in their third year undergo a research intensive block, the Research Practicum, where they work as a team to conduct secondary data analysis on a dataset with faculty facilitation. In 2023, this research block focused on use of the All of Us Researcher Workbench for secondary data analysis.</p><p><strong>Materials and methods: </strong>Two groups of 5 residents underwent training to access the All of Us Researcher Workbench, and each group explored available data with a faculty facilitator and generated original research questions. Two blocks of residents successfully completed their research blocks and created original presentations on \\\"social isolation and A1C\\\" levels and \\\"medical discrimination and diabetes management.\\\"</p><p><strong>Results: </strong>Departmental faculty were satisfied with the depth of learning and data exploration. In focus groups, some residents noted that for those without interest in performing research, the activity felt extraneous to their career goals, while others were glad for the opportunity to publish. In both blocks, residents highlighted dissatisfaction with the degree to which the All of Us Researcher Workbench was representative of patients they encounter in a large safety net hospital.</p><p><strong>Discussion: </strong>Using the All of Us Researcher Workbench provided residents with an opportunity to explore novel questions in a massive data source. Many residents however noted that because the population described in the All of Us Researcher Workbench appeared to be more highly educated and less racially diverse than patients they encounter in their practice, research may be hard to generalize in a community health context. Additionally, given that the data required knowledge of 1 of 2 code-based data analysis languages (R or Python) and work within an idiosyncratic coding environment, residents were heavily reliant on a faculty facilitator to assist with analysis.</p><p><strong>Conclusion: </strong>Using the All of Us Researcher Workbench for research training allowed residents to explore novel questions and gain first-hand exposure to opportunities and challenges in secondary data analysis.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae162\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本病例报告旨在详细介绍使用 "我们所有人 "研究员工作台对初级保健住院医师进行二次分析培训的经验和挑战。在我们这家大型城市安全网医院,初级保健/内科住院医师在第三年要接受研究实习这一研究强化阶段的培训,在这一阶段,他们以团队的形式在教师的协助下对数据集进行二次数据分析。2023 年,该研究单元的重点是使用 "我们所有人 "研究员工作台进行二级数据分析:两组共 5 名住院医师接受了访问 All of Us Researcher Workbench 的培训,每组在教师的协助下探索可用数据,并提出原创研究问题。两组住院医师成功完成了他们的研究模块,并就 "社会隔离与 A1C "水平和 "医疗歧视与糖尿病管理 "发表了原创演讲:部门教师对学习和数据探索的深度表示满意。在焦点小组中,一些住院医师指出,对于那些没有兴趣从事研究的住院医师来说,这项活动感觉与他们的职业目标无关,而另一些住院医师则为有机会发表论文而感到高兴。在这两个讨论组中,住院医师们都强调了对 "我们所有人 "研究人员工作台在多大程度上代表了他们在大型安全网医院中遇到的病人的不满:讨论:使用 "我们所有人 "研究人员工作台为住院医师提供了一个在海量数据源中探索新问题的机会。然而,许多居民指出,由于 "我们所有人 "研究人员工作台中描述的人群与他们在实践中遇到的患者相比,受教育程度更高,种族多样性更少,因此研究可能难以在社区卫生环境中推广。此外,鉴于数据需要掌握 2 种基于代码的数据分析语言(R 或 Python)中的一种,并且需要在特殊的编码环境中工作,因此居民在很大程度上依赖于教师协助分析:使用 "我们所有人 "研究人员工作台进行研究培训,使住院医师能够探索新问题,并亲身体验二手数据分析的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All of whom? Limitations encountered using All of Us Researcher Workbench in a Primary Care residents secondary data analysis research training block.

Objectives: The goal of this case report is to detail experiences and challenges experienced in the training of Primary Care residents in secondary analysis using All of Us Researcher Workbench. At our large, urban safety net hospital, Primary Care/Internal Medicine residents in their third year undergo a research intensive block, the Research Practicum, where they work as a team to conduct secondary data analysis on a dataset with faculty facilitation. In 2023, this research block focused on use of the All of Us Researcher Workbench for secondary data analysis.

Materials and methods: Two groups of 5 residents underwent training to access the All of Us Researcher Workbench, and each group explored available data with a faculty facilitator and generated original research questions. Two blocks of residents successfully completed their research blocks and created original presentations on "social isolation and A1C" levels and "medical discrimination and diabetes management."

Results: Departmental faculty were satisfied with the depth of learning and data exploration. In focus groups, some residents noted that for those without interest in performing research, the activity felt extraneous to their career goals, while others were glad for the opportunity to publish. In both blocks, residents highlighted dissatisfaction with the degree to which the All of Us Researcher Workbench was representative of patients they encounter in a large safety net hospital.

Discussion: Using the All of Us Researcher Workbench provided residents with an opportunity to explore novel questions in a massive data source. Many residents however noted that because the population described in the All of Us Researcher Workbench appeared to be more highly educated and less racially diverse than patients they encounter in their practice, research may be hard to generalize in a community health context. Additionally, given that the data required knowledge of 1 of 2 code-based data analysis languages (R or Python) and work within an idiosyncratic coding environment, residents were heavily reliant on a faculty facilitator to assist with analysis.

Conclusion: Using the All of Us Researcher Workbench for research training allowed residents to explore novel questions and gain first-hand exposure to opportunities and challenges in secondary data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology. Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. Research for all: building a diverse researcher community for the All of Us Research Program. Learning health system linchpins: information exchange and a common data model. Oncointerpreter.ai enables interactive, personalized summarization of cancer diagnostics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1