辉绿岩-流体相互作用过程中稀土元素的移动:对华南雷公岩型稀土元素矿床形成的启示

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2024-06-26 DOI:10.1007/s00126-024-01290-3
Jingzhao Dou, Christina Yan Wang, Wei Tan, Zisong Zhao
{"title":"辉绿岩-流体相互作用过程中稀土元素的移动:对华南雷公岩型稀土元素矿床形成的启示","authors":"Jingzhao Dou, Christina Yan Wang, Wei Tan, Zisong Zhao","doi":"10.1007/s00126-024-01290-3","DOIUrl":null,"url":null,"abstract":"<p>The regolith-hosted rare earth element (REE) deposits in South China are important sources of the world’s REE production. The alteration processes of primary REE-bearing minerals in granitic bedrock remain unclear so that the pathways of REE mobilization from primary minerals to regolith-hosted REE deposits have not yet been well established. Allanite is the principal REE repository in granitic bedrock and may have undergone alteration during deuteric fluid metasomatism and supergene weathering. Here, we document the allanite in the bedrock of the Zuokeng regolith-hosted REE deposit in South China to decode the REE mobilization during interaction of allanite with two different types of fluids. Most allanite grains have four distinct domains in the backscattered electron (BSE) images. Domain 1 is of magmatic origin and enriched in light REE (LREE), whereas Domains 2, 3 and 4 are of hydrothermal origin with different degrees of enrichment in middle to heavy REE (M-HREE). In particular, Domain 4 appears as overgrowth rims with the highest M-HREE concentrations among hydrothermal domains and likely crystallized from Cl-rich deuteric fluids exsolved from granitic magmas, evidenced by consistent U–Pb ages (ca. 159 Ma) and ε<sub>Nd</sub>(t) values (-9.4 to -7.3) of Domains 4 and 1. The preferential removal of LREE and uptake of M-HREE from Domains 2 and 3 to Domain 4 is thus attributed to metasomatism by Cl-rich deuteric fluids. On the other hand, some allanite grains in weathered bedrock also interacted with F- and carbonate-rich groundwater and were gradually replaced by synchysite-(Ce) and calcite. Consequently, LREE were concentrated in synchysite-(Ce), whereas M-HREE may have been lost to groundwater. This study unravels that the enrichment of LREE and M-HREE in altered bedrock was initially facilitated by F-, carbonate-rich fluids and Cl-rich deuteric fluids, respectively, which are likely crucial for developing regolith-hosted LREE and M-HREE deposits in South China.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"62 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobilization of rare earth elements during allanite-fluid interaction: Insights into formation of regolith-hosted rare earth element deposits in South China\",\"authors\":\"Jingzhao Dou, Christina Yan Wang, Wei Tan, Zisong Zhao\",\"doi\":\"10.1007/s00126-024-01290-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regolith-hosted rare earth element (REE) deposits in South China are important sources of the world’s REE production. The alteration processes of primary REE-bearing minerals in granitic bedrock remain unclear so that the pathways of REE mobilization from primary minerals to regolith-hosted REE deposits have not yet been well established. Allanite is the principal REE repository in granitic bedrock and may have undergone alteration during deuteric fluid metasomatism and supergene weathering. Here, we document the allanite in the bedrock of the Zuokeng regolith-hosted REE deposit in South China to decode the REE mobilization during interaction of allanite with two different types of fluids. Most allanite grains have four distinct domains in the backscattered electron (BSE) images. Domain 1 is of magmatic origin and enriched in light REE (LREE), whereas Domains 2, 3 and 4 are of hydrothermal origin with different degrees of enrichment in middle to heavy REE (M-HREE). In particular, Domain 4 appears as overgrowth rims with the highest M-HREE concentrations among hydrothermal domains and likely crystallized from Cl-rich deuteric fluids exsolved from granitic magmas, evidenced by consistent U–Pb ages (ca. 159 Ma) and ε<sub>Nd</sub>(t) values (-9.4 to -7.3) of Domains 4 and 1. The preferential removal of LREE and uptake of M-HREE from Domains 2 and 3 to Domain 4 is thus attributed to metasomatism by Cl-rich deuteric fluids. On the other hand, some allanite grains in weathered bedrock also interacted with F- and carbonate-rich groundwater and were gradually replaced by synchysite-(Ce) and calcite. Consequently, LREE were concentrated in synchysite-(Ce), whereas M-HREE may have been lost to groundwater. This study unravels that the enrichment of LREE and M-HREE in altered bedrock was initially facilitated by F-, carbonate-rich fluids and Cl-rich deuteric fluids, respectively, which are likely crucial for developing regolith-hosted LREE and M-HREE deposits in South China.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01290-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01290-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

华南地区的雷公岩型稀土元素(REE)矿床是世界稀土元素生产的重要来源。花岗岩基岩中原生含稀土元素矿物的蚀变过程尚不清楚,因此稀土元素从原生矿物到雷公岩型稀土元素矿床的移动途径尚未得到很好的确定。赤铁矿是花岗岩基岩中主要的REE储藏体,可能在氘流体变质作用和超生风化作用过程中发生了蚀变。在此,我们记录了华南左坑雷公岩型REE矿床基岩中的辉绿岩,以解读辉绿岩与两种不同类型流体相互作用过程中的REE移动。在背散射电子(BSE)图像中,大多数绿帘石晶粒有四个不同的域。域 1 源自岩浆,富含轻型 REE(LREE),而域 2、3 和 4 源自热液,不同程度地富含中重型 REE(M-HREE)。尤其是域 4,在热液域中,它是 M-HREE 富集度最高的过度生长边缘,很可能是由花岗岩岩浆中溶解出的富含 Cl- 的氘流体结晶而成的,这一点可以从一致的 U-Pb 年龄(约 159 Ma)和 εNN 年龄得到证明。因此,岩域 2 和岩域 3 优先去除 LREE 并吸收岩域 4 中的 M-HREE 可归因于富氚流体的变质作用。另一方面,风化基岩中的一些绿帘石颗粒也与富含F和碳酸盐的地下水相互作用,并逐渐被合晶石(Ce)和方解石所取代。因此,LREE 集中在合晶石(Ce)中,而 M-HREE 则可能流失到地下水中。该研究揭示了蚀变基岩中LREE和M-HREE的富集最初分别是由富含F-、碳酸盐的流体和富含Cl-的氘化流体所促进的,而这两种流体可能是在华南地区开发雷公岩型LREE和M-HREE矿床的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobilization of rare earth elements during allanite-fluid interaction: Insights into formation of regolith-hosted rare earth element deposits in South China

The regolith-hosted rare earth element (REE) deposits in South China are important sources of the world’s REE production. The alteration processes of primary REE-bearing minerals in granitic bedrock remain unclear so that the pathways of REE mobilization from primary minerals to regolith-hosted REE deposits have not yet been well established. Allanite is the principal REE repository in granitic bedrock and may have undergone alteration during deuteric fluid metasomatism and supergene weathering. Here, we document the allanite in the bedrock of the Zuokeng regolith-hosted REE deposit in South China to decode the REE mobilization during interaction of allanite with two different types of fluids. Most allanite grains have four distinct domains in the backscattered electron (BSE) images. Domain 1 is of magmatic origin and enriched in light REE (LREE), whereas Domains 2, 3 and 4 are of hydrothermal origin with different degrees of enrichment in middle to heavy REE (M-HREE). In particular, Domain 4 appears as overgrowth rims with the highest M-HREE concentrations among hydrothermal domains and likely crystallized from Cl-rich deuteric fluids exsolved from granitic magmas, evidenced by consistent U–Pb ages (ca. 159 Ma) and εNd(t) values (-9.4 to -7.3) of Domains 4 and 1. The preferential removal of LREE and uptake of M-HREE from Domains 2 and 3 to Domain 4 is thus attributed to metasomatism by Cl-rich deuteric fluids. On the other hand, some allanite grains in weathered bedrock also interacted with F- and carbonate-rich groundwater and were gradually replaced by synchysite-(Ce) and calcite. Consequently, LREE were concentrated in synchysite-(Ce), whereas M-HREE may have been lost to groundwater. This study unravels that the enrichment of LREE and M-HREE in altered bedrock was initially facilitated by F-, carbonate-rich fluids and Cl-rich deuteric fluids, respectively, which are likely crucial for developing regolith-hosted LREE and M-HREE deposits in South China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt) The sulfur isotope evolution of the Duobuza Cu-Au porphyry deposit in the Duolong district, Central Tibet, China Ore and gangue mineral textures, fluid inclusions, mesoscopically structured quartz and pyrite, and their bearing on the genesis of hydrothermal breccias in the low-sulfidation Surnak gold deposit, SE Bulgaria Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1