具有超高直流电密度的原子晶体过渡金属二卤化物肖特基三电能纳米发电机

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-25 DOI:10.1016/j.nanoen.2024.109936
Jian Zhou , Jianing Zhang , Yuanpeng Deng , Jingran Guo, Han Zhao, Cong Li, Shixuan Dang, Hongxuan Yu, Dizhou Liu, Duola Wang, Chuanyun Song, Yingde Zhao, Zhengli Yan, Jiali Chen, Hui Li, Xiang Xu
{"title":"具有超高直流电密度的原子晶体过渡金属二卤化物肖特基三电能纳米发电机","authors":"Jian Zhou ,&nbsp;Jianing Zhang ,&nbsp;Yuanpeng Deng ,&nbsp;Jingran Guo,&nbsp;Han Zhao,&nbsp;Cong Li,&nbsp;Shixuan Dang,&nbsp;Hongxuan Yu,&nbsp;Dizhou Liu,&nbsp;Duola Wang,&nbsp;Chuanyun Song,&nbsp;Yingde Zhao,&nbsp;Zhengli Yan,&nbsp;Jiali Chen,&nbsp;Hui Li,&nbsp;Xiang Xu","doi":"10.1016/j.nanoen.2024.109936","DOIUrl":null,"url":null,"abstract":"<div><p>Direct-current triboelectric nanogenerators (DC-TENGs) have recently become more attractive to convert mechanical energy into electricity due to their high current density with no need for rectification. Interfacial charge transfer, induced by the sliding contact on semiconductor materials, is critical to generate DC output but usually limited by the interfacial properties. Here, we report Schottky DC-TENGs based on the atomic-crystal transition-metal dichalcogenides (TMDs) with single crystallinity, monolayer thickness and atomic flatness to enhance the interfacial charge transfer. A record-high current density of 10<sup>10</sup> A/m<sup>2</sup>, two orders of magnitude higher than the state-of-the-art performance, can be directly generated by sliding a conductive-atomic force microscope tip on an atomic-crystal molybdenum disulfide. Density functional theory calculation and finite element simulation reveal that this ultrahigh current density can be attributed to the enhanced interfacial property owing to the atomic flatness of TMDs and strong local electrical field of nanoscale tip. We further demonstrate their excellent scalability by a high-crystalline monolayer film with sliding electrode. This work may guide and accelerate the development and application of high-performance DC-TENGs.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-crystal transition metal dichalcogenides Schottky triboelectricity nanogenerator with ultrahigh direct-current density\",\"authors\":\"Jian Zhou ,&nbsp;Jianing Zhang ,&nbsp;Yuanpeng Deng ,&nbsp;Jingran Guo,&nbsp;Han Zhao,&nbsp;Cong Li,&nbsp;Shixuan Dang,&nbsp;Hongxuan Yu,&nbsp;Dizhou Liu,&nbsp;Duola Wang,&nbsp;Chuanyun Song,&nbsp;Yingde Zhao,&nbsp;Zhengli Yan,&nbsp;Jiali Chen,&nbsp;Hui Li,&nbsp;Xiang Xu\",\"doi\":\"10.1016/j.nanoen.2024.109936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Direct-current triboelectric nanogenerators (DC-TENGs) have recently become more attractive to convert mechanical energy into electricity due to their high current density with no need for rectification. Interfacial charge transfer, induced by the sliding contact on semiconductor materials, is critical to generate DC output but usually limited by the interfacial properties. Here, we report Schottky DC-TENGs based on the atomic-crystal transition-metal dichalcogenides (TMDs) with single crystallinity, monolayer thickness and atomic flatness to enhance the interfacial charge transfer. A record-high current density of 10<sup>10</sup> A/m<sup>2</sup>, two orders of magnitude higher than the state-of-the-art performance, can be directly generated by sliding a conductive-atomic force microscope tip on an atomic-crystal molybdenum disulfide. Density functional theory calculation and finite element simulation reveal that this ultrahigh current density can be attributed to the enhanced interfacial property owing to the atomic flatness of TMDs and strong local electrical field of nanoscale tip. We further demonstrate their excellent scalability by a high-crystalline monolayer film with sliding electrode. This work may guide and accelerate the development and application of high-performance DC-TENGs.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006852\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006852","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

直流三电纳米发电机(DC-TENGs)具有无需整流的高电流密度,因此近来在将机械能转化为电能方面更具吸引力。由半导体材料滑动接触引起的界面电荷转移是产生直流输出的关键,但通常受到界面特性的限制。在此,我们报告了基于原子晶体过渡金属二卤化物(TMDs)的肖特基直流-直流电源,TMDs 具有单晶性、单层厚度和原子平面度,可增强界面电荷转移。通过在原子晶体二硫化钼上滑动导电原子力显微镜尖端,可直接产生 10 A/m 的创纪录高电流密度,比最先进的性能高出两个数量级。密度泛函理论计算和有限元模拟显示,这种超高电流密度可归因于 TMD 的原子平面度和纳米级尖端的强局部电场增强了界面特性。我们还通过带有滑动电极的高结晶单层薄膜进一步证明了其出色的可扩展性。这项工作可指导并加速高性能直流-TENG 的开发和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-crystal transition metal dichalcogenides Schottky triboelectricity nanogenerator with ultrahigh direct-current density

Direct-current triboelectric nanogenerators (DC-TENGs) have recently become more attractive to convert mechanical energy into electricity due to their high current density with no need for rectification. Interfacial charge transfer, induced by the sliding contact on semiconductor materials, is critical to generate DC output but usually limited by the interfacial properties. Here, we report Schottky DC-TENGs based on the atomic-crystal transition-metal dichalcogenides (TMDs) with single crystallinity, monolayer thickness and atomic flatness to enhance the interfacial charge transfer. A record-high current density of 1010 A/m2, two orders of magnitude higher than the state-of-the-art performance, can be directly generated by sliding a conductive-atomic force microscope tip on an atomic-crystal molybdenum disulfide. Density functional theory calculation and finite element simulation reveal that this ultrahigh current density can be attributed to the enhanced interfacial property owing to the atomic flatness of TMDs and strong local electrical field of nanoscale tip. We further demonstrate their excellent scalability by a high-crystalline monolayer film with sliding electrode. This work may guide and accelerate the development and application of high-performance DC-TENGs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1