使用混合田口遗传算法对无磁场轴向磁通开关永磁电机进行多目标优化以扩大转速范围

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Transactions on Electrical Energy Systems Pub Date : 2024-06-24 DOI:10.1155/2024/6855758
Javad Rahmani-Fard, Saeed Hasanzadeh
{"title":"使用混合田口遗传算法对无磁场轴向磁通开关永磁电机进行多目标优化以扩大转速范围","authors":"Javad Rahmani-Fard,&nbsp;Saeed Hasanzadeh","doi":"10.1155/2024/6855758","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper proposes a multiobjective hybrid Taguchi genetic algorithm (HTGA) to optimize the speed range of a yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor. HTGA combines Taguchi’s local optimization with the global optimization of traditional genetic algorithms (GAs), facilitating faster and more accurate solutions. The Taguchi method is employed to generate offspring individuals within GA; it inherits parameter characteristics from stronger offspring, saving considerable computation time. The objective is to achieve a motor with low cogging torque, high average torque, and an expanded speed range in the field weakening area. Various parameters of the motor, such as the split ratio, stator axial length, pole angles, PM arc, and number of conductors per slot, are selected as optimization variables. The optimization constraints include the field-weakening rate, saliency rate, cogging torque, and average torque. The optimized motor parameters are determined, and the speed range before and after optimization is evaluated. Cosimulation analysis using a 3-D finite element method (FEM) is performed under no-load and full-load conditions to compare the motor’s speed regulation range. The optimized motor exhibits a maximum speed that is almost 1.5 times higher than the initial design, with improvements of 11.3% in average torque and 9% in cogging torque. Experimental results compared to 3-D FEM simulations demonstrate the superior performance of the optimized motor in terms of speed, torque, power, and efficiency.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6855758","citationCount":"0","resultStr":"{\"title\":\"Multiobjective Optimization of Yokeless Axial-Field Flux-Switching Permanent Magnet Motor Using the Hybrid Taguchi Genetic Algorithm for Expanded Speed Range\",\"authors\":\"Javad Rahmani-Fard,&nbsp;Saeed Hasanzadeh\",\"doi\":\"10.1155/2024/6855758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This paper proposes a multiobjective hybrid Taguchi genetic algorithm (HTGA) to optimize the speed range of a yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor. HTGA combines Taguchi’s local optimization with the global optimization of traditional genetic algorithms (GAs), facilitating faster and more accurate solutions. The Taguchi method is employed to generate offspring individuals within GA; it inherits parameter characteristics from stronger offspring, saving considerable computation time. The objective is to achieve a motor with low cogging torque, high average torque, and an expanded speed range in the field weakening area. Various parameters of the motor, such as the split ratio, stator axial length, pole angles, PM arc, and number of conductors per slot, are selected as optimization variables. The optimization constraints include the field-weakening rate, saliency rate, cogging torque, and average torque. The optimized motor parameters are determined, and the speed range before and after optimization is evaluated. Cosimulation analysis using a 3-D finite element method (FEM) is performed under no-load and full-load conditions to compare the motor’s speed regulation range. The optimized motor exhibits a maximum speed that is almost 1.5 times higher than the initial design, with improvements of 11.3% in average torque and 9% in cogging torque. Experimental results compared to 3-D FEM simulations demonstrate the superior performance of the optimized motor in terms of speed, torque, power, and efficiency.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6855758\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6855758\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6855758","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多目标混合田口遗传算法(HTGA),用于优化无轴磁场磁通开关永磁电机(YASA-AFFSPM)的速度范围。HTGA 将 Taguchi 的局部优化与传统遗传算法 (GAs) 的全局优化相结合,有助于更快、更准确地解决问题。田口方法用于在遗传算法中生成子代个体;它继承了较强子代个体的参数特征,节省了大量计算时间。目标是实现低齿槽转矩、高平均转矩以及在电场削弱区域扩大速度范围的电机。电机的各种参数,如分流比、定子轴向长度、磁极角、永磁弧和每个槽的导体数,都被选作优化变量。优化约束条件包括磁场削弱率、突出率、齿槽转矩和平均转矩。确定了优化后的电机参数,并评估了优化前后的转速范围。在空载和满载条件下,使用三维有限元法(FEM)进行了模拟分析,以比较电机的调速范围。优化后的电机最高转速几乎是最初设计的 1.5 倍,平均扭矩和齿槽扭矩分别提高了 11.3% 和 9%。实验结果与三维有限元模拟结果的比较表明,优化后的电机在速度、扭矩、功率和效率方面都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiobjective Optimization of Yokeless Axial-Field Flux-Switching Permanent Magnet Motor Using the Hybrid Taguchi Genetic Algorithm for Expanded Speed Range

This paper proposes a multiobjective hybrid Taguchi genetic algorithm (HTGA) to optimize the speed range of a yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor. HTGA combines Taguchi’s local optimization with the global optimization of traditional genetic algorithms (GAs), facilitating faster and more accurate solutions. The Taguchi method is employed to generate offspring individuals within GA; it inherits parameter characteristics from stronger offspring, saving considerable computation time. The objective is to achieve a motor with low cogging torque, high average torque, and an expanded speed range in the field weakening area. Various parameters of the motor, such as the split ratio, stator axial length, pole angles, PM arc, and number of conductors per slot, are selected as optimization variables. The optimization constraints include the field-weakening rate, saliency rate, cogging torque, and average torque. The optimized motor parameters are determined, and the speed range before and after optimization is evaluated. Cosimulation analysis using a 3-D finite element method (FEM) is performed under no-load and full-load conditions to compare the motor’s speed regulation range. The optimized motor exhibits a maximum speed that is almost 1.5 times higher than the initial design, with improvements of 11.3% in average torque and 9% in cogging torque. Experimental results compared to 3-D FEM simulations demonstrate the superior performance of the optimized motor in terms of speed, torque, power, and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
期刊最新文献
Current-Limiting Strategy for Unbalanced Low-Voltage Ride Through of the SMSI-MG Based on Coordinated Control of the Generator Subunits A Scalable and Coordinated Energy Management for Electric Vehicles Based on Multiagent Reinforcement Learning Method Technoeconomic Conservation Voltage Reduction–Based Demand Response Approach to Control Distributed Power Networks A Universal Source DC–DC Boost Converter for PEMFC-Fed EV Systems With Optimization-Based MPPT Controller Optimal Scheduling Strategy of Wind–Solar–Thermal-Storage Power Energy Based on CGAN and Dynamic Line–Rated Power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1