InSe/PtTe2 范德华异质结构的电子和传输特性。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-27 DOI:10.1021/acs.nanolett.4c02067
Siyu Zhang, Zhengchang Xia, Junhua Meng, Yong Cheng, Ji Jiang, Zhigang Yin and Xingwang Zhang*, 
{"title":"InSe/PtTe2 范德华异质结构的电子和传输特性。","authors":"Siyu Zhang,&nbsp;Zhengchang Xia,&nbsp;Junhua Meng,&nbsp;Yong Cheng,&nbsp;Ji Jiang,&nbsp;Zhigang Yin and Xingwang Zhang*,&nbsp;","doi":"10.1021/acs.nanolett.4c02067","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) InSe and PtTe<sub>2</sub> have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe<sub>2</sub> vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼10<sup>3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe<sub>2</sub> vdW heterostructures have great potential applications in developing novel optoelectronic devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and Transport Properties of InSe/PtTe2 van der Waals Heterostructure\",\"authors\":\"Siyu Zhang,&nbsp;Zhengchang Xia,&nbsp;Junhua Meng,&nbsp;Yong Cheng,&nbsp;Ji Jiang,&nbsp;Zhigang Yin and Xingwang Zhang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c02067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) InSe and PtTe<sub>2</sub> have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe<sub>2</sub> vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼10<sup>3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe<sub>2</sub> vdW heterostructures have great potential applications in developing novel optoelectronic devices.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02067\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)InSe 和 PtTe2 因其引人入胜的特性而受到广泛关注。然而,铟硒单层是一种间接带隙半导体,空穴迁移率较低。范德华(vdW)异质结构可产生超越现有二维材料的有趣电子和光电特性,并赋予全新的器件功能。在此,我们从理论上研究了 InSe/PtTe2 vdW 异质结构的电子结构、传输行为和电场调谐效应。计算结果表明,通过调节异质结构的堆叠构型,可以实现直接带隙 II 型 vdW 异质结构。通过施加外部电场,异质结构的带排列和带隙也可以被灵活调制。特别是,异质结构的空穴迁移率提高了 2 个数量级,达到 ∼103 cm2 V-1 s-1,克服了 InSe 单层的固有缺点。InSe/PtTe2 vdW 异质结构在开发新型光电器件方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic and Transport Properties of InSe/PtTe2 van der Waals Heterostructure

Two-dimensional (2D) InSe and PtTe2 have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe2 vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼103 cm2 V–1 s–1, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe2 vdW heterostructures have great potential applications in developing novel optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Colloidal Synthesis of Cu3N Nanorods and Construction of Cu3N-Cu2O Heteronanostructures via Epitaxial Growth. Harnessing Persistent Photocurrent in a 2D Semiconductor-Polymer Hybrid Structure: Electron Trapping and Fermi Level Modulation for Optoelectronic Memory. Solidify Eutectic Electrolytes via the Added MXene as Nucleation Sites for a Solid-State Zinc-Ion Battery with Reconstructed Ion Transport.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1