调整铜镁铝层双氢氧化物纳米结构,在 CO2 电还原中实现 CH4 和 C2+ 产物选择性。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-26 DOI:10.1021/acs.nanolett.4c02233
Jin Ho Lee, Wonsik Jang, Hojeong Lee, Daewon Oh, Woo Yeong Noh, Kwang Young Kim, Jongkyoung Kim, Hyoseok Kim, Kwangjin An, Min Gyu Kim, Youngkook Kwon, Jae Sung Lee, Seungho Cho
{"title":"调整铜镁铝层双氢氧化物纳米结构,在 CO2 电还原中实现 CH4 和 C2+ 产物选择性。","authors":"Jin Ho Lee, Wonsik Jang, Hojeong Lee, Daewon Oh, Woo Yeong Noh, Kwang Young Kim, Jongkyoung Kim, Hyoseok Kim, Kwangjin An, Min Gyu Kim, Youngkook Kwon, Jae Sung Lee, Seungho Cho","doi":"10.1021/acs.nanolett.4c02233","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) over Cu-based catalysts is a promising approach for efficiently converting CO<sub>2</sub> into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO<sub>2</sub>RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO<sub>2</sub>RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO<sub>2</sub>RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu<sup>2+</sup> species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH<sub>4</sub>. Conversely, the mixed Cu<sup>0</sup>/Cu<sup>+</sup> species in high-Cu-containing LDHs derived from the electroreduction during the eCO<sub>2</sub>RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO<sub>2</sub>RR performance for CH<sub>4</sub> and C<sub>2+</sub> products, respectively.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH<sub>4</sub> and C<sub>2+</sub> Product Selectivity in CO<sub>2</sub> Electroreduction.\",\"authors\":\"Jin Ho Lee, Wonsik Jang, Hojeong Lee, Daewon Oh, Woo Yeong Noh, Kwang Young Kim, Jongkyoung Kim, Hyoseok Kim, Kwangjin An, Min Gyu Kim, Youngkook Kwon, Jae Sung Lee, Seungho Cho\",\"doi\":\"10.1021/acs.nanolett.4c02233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) over Cu-based catalysts is a promising approach for efficiently converting CO<sub>2</sub> into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO<sub>2</sub>RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO<sub>2</sub>RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO<sub>2</sub>RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu<sup>2+</sup> species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH<sub>4</sub>. Conversely, the mixed Cu<sup>0</sup>/Cu<sup>+</sup> species in high-Cu-containing LDHs derived from the electroreduction during the eCO<sub>2</sub>RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO<sub>2</sub>RR performance for CH<sub>4</sub> and C<sub>2+</sub> products, respectively.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02233\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在铜基催化剂上进行电化学二氧化碳还原反应(eCO2RR)是将二氧化碳高效转化为高附加值化学品和替代燃料的一种可行方法。然而,由于在 eCO2RR 反应过程中难以控制 Cu 的氧化态以实现稳健的结构重构,因此从 eCO2RR 中获得可控的产品选择性仍然具有挑战性。在此,我们报告了一种新策略,即通过调整基于 CuMgAl 层状双氢氧化物 (LDH) 催化剂中的铜含量来调整铜物种的氧化态并实现 eCO2RR 产物选择性。在这一策略中,低含铜量 LDH 中高度稳定的 Cu2+ 物种有助于强力吸附 *CO 中间产物并进一步加氢转化为 CH4。相反,eCO2RR 过程中电解还原产生的高含铜量 LDH 中的 Cu0/Cu+ 混合物种则加速了 C-C 偶联反应。这种利用低Cu摩尔比和高Cu摩尔比的LDH纳米结构调节Cu氧化态的策略分别为CH4和C2+产物带来了卓越的eCO2RR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH4 and C2+ Product Selectivity in CO2 Electroreduction.

Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Cu(II) Specifically Disassembles Insulin Amyloid Nanostructures via Direct Interaction with Cross-β Fibrils. Direct Determination of Torsion in Twisted Graphite and MoS2 Interfaces. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO2 Nanozyme. Magnetic Structure-Dependent Ultrafast Spin Relaxation in Magnet CrI3: A Time-Domain ab Initio Study. Single-Cell Synchro-Subtractive-Additive Nanoscale Surgery with Femtosecond Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1