单层细胞定向迁移前 PTEN 的时空分布。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2024-12-01 Epub Date: 2024-06-26 DOI:10.1007/s11626-024-00927-x
Quanzhi Lu, Saori Sasaki, Toshihiro Sera, Susumu Kudo
{"title":"单层细胞定向迁移前 PTEN 的时空分布。","authors":"Quanzhi Lu, Saori Sasaki, Toshihiro Sera, Susumu Kudo","doi":"10.1007/s11626-024-00927-x","DOIUrl":null,"url":null,"abstract":"<p><p>The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1160-1173"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal distribution of PTEN before directed cell migration in monolayers.\",\"authors\":\"Quanzhi Lu, Saori Sasaki, Toshihiro Sera, Susumu Kudo\",\"doi\":\"10.1007/s11626-024-00927-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"1160-1173\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00927-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00927-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷酸酶和天丝同源物(PTEN)的胞内分布与定向细胞迁移密切相关。在单细胞中,PTEN 在定向迁移前和迁移过程中积聚在细胞后部;然而,PTEN 在汇合细胞单层中的时空分布,尤其是在定向迁移前的时空分布仍不清楚。在这项研究中,我们在汇合的胎鼠皮肤角质形成细胞(FRSKs)中损伤了一个细胞,并研究了PTEN在损伤细胞邻近细胞中的动态变化。与单细胞迁移不同的是,我们发现 PTEN 在定向迁移开始之前就转位到了细胞核。PTEN的这种核转位不会发生在断开的细胞中,而且也会被导入素-β抑制剂和肌动蛋白抑制剂所抑制。当输入蛋白-β抑制剂抑制PTEN的核定位时,细胞向迁移方向的伸长也会受到明显抑制。我们的研究结果表明,PTEN的转位是由细胞-细胞粘附的破坏诱导的,并且需要输入蛋白-β和肌动蛋白细胞骨架信号的参与。此外,磷脂酰肌醇 3,4,5-三磷酸酯(PIP3)可能会通过在细胞边缘的局部聚集来调节 PTEN 的分布。我们的研究结果表明,PTEN的转位对于定向细胞迁移以及对融合细胞单层中的机械环境变化做出反应至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal distribution of PTEN before directed cell migration in monolayers.

The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Melatonin inhibits ferroptosis through the ATF3/GPX4 signaling pathway to relieve myocardial ischemia-reperfusion injury in rats. Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis. Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway. Using cationic liposomes as carriers for long dsRNA to trigger an antiviral response in rainbow trout cell lines. Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1