奥米加-3 多不饱和脂肪酸与帕金森病:动物研究的系统回顾。

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Neurochemistry Pub Date : 2024-06-24 DOI:10.1111/jnc.16154
Barbara da Silva Alves, Lucia Emanueli Schimith, André Brito da Cunha, Cristiana Lima Dora, Mariana Appel Hort
{"title":"奥米加-3 多不饱和脂肪酸与帕金森病:动物研究的系统回顾。","authors":"Barbara da Silva Alves,&nbsp;Lucia Emanueli Schimith,&nbsp;André Brito da Cunha,&nbsp;Cristiana Lima Dora,&nbsp;Mariana Appel Hort","doi":"10.1111/jnc.16154","DOIUrl":null,"url":null,"abstract":"<p>Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms “Parkinson's disease,” “fish oil,” “omega 3,” “docosahexaenoic acid,” and “eicosapentaenoic acid” across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16154","citationCount":"0","resultStr":"{\"title\":\"Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies\",\"authors\":\"Barbara da Silva Alves,&nbsp;Lucia Emanueli Schimith,&nbsp;André Brito da Cunha,&nbsp;Cristiana Lima Dora,&nbsp;Mariana Appel Hort\",\"doi\":\"10.1111/jnc.16154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms “Parkinson's disease,” “fish oil,” “omega 3,” “docosahexaenoic acid,” and “eicosapentaenoic acid” across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16154\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16154\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16154","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是第二大常见的神经退行性疾病。帕金森病的主要病理特征包括α-突触核蛋白聚集体和路易体、线粒体功能障碍、氧化应激和神经炎症。最近,ω-3 脂肪酸(ω-3 PUFAs)作为一种预防和/或治疗帕金森病的策略受到了研究,这主要是由于它们具有抗氧化和抗炎特性。因此,本研究的目的是对文献进行系统性综述,重点是评估ω-3 PUFAs在模拟人类帕金森病的啮齿类动物模型中的作用的研究。在 PUBMED、Web of Science、Science Direct、Scielo 和 Google Scholar 等数据库中使用 "帕金森病"、"鱼油"、"ω 3"、"二十二碳六烯酸 "和 "二十碳五烯酸 "等术语进行了检索。根据预先确定的纳入和排除标准进行分析后,共纳入 39 项研究。考虑到行为参数、疾病的病理标志物、大脑中 ω-3 PUFAs 的定量以及抗炎、抗氧化和抗细胞凋亡作用,可以发现 ω-3 PUFAs 对帕金森病具有潜在的神经保护作用。总之,本系统综述提供了有关ω-3 PUFAs神经保护特性的作用和机制的重要科学证据,为未来临床研究的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms “Parkinson's disease,” “fish oil,” “omega 3,” “docosahexaenoic acid,” and “eicosapentaenoic acid” across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
期刊最新文献
Causal association between insulin sensitivity index and Alzheimer's disease. Circulating medium- and long-chain acylcarnitines are associated with plasma P-tau181 in cognitively normal older adults. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. o1 and Gαo1/Gαo2 deletion differentially affect hippocampal mossy fiber tract anatomy and neuronal morphogenesis. Association of serum lipidomic profiles with risk of intracranial aneurysm: A Mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1