{"title":"水下光无线网络的距离自适应双跳路由算法","authors":"Jing Ji, Yinkang Dai, Yang Qiu","doi":"10.1016/j.osn.2024.100782","DOIUrl":null,"url":null,"abstract":"<div><p>Three main kinds of underwater wireless communication, which employ acoustic waves, radio frequency and optical waves, have attracted intensive research interests in recently years. Among them, the underwater optical wireless communication (UOWC) is characterized by high propagation speed and large transmission bandwidth. But, the optical waves in underwater environment are significantly affected by absorption and scattering effects, which limit their transmission range. In order to enhance the performance of UOWC, designing a transmission and energy efficiency routing algorithm has become a non-ignorable issue in UOWC. In this paper, a transmission distance adaptive dual-hop (TDAD) routing algorithm is proposed for underwater optical wireless networks (UOWNs) to improve their efficiency in packet-delivery and energy-consumption. Unlike the existing routing algorithms designed for UOWNs, which pre-set the transmission range of network nodes, the proposed TDAD algorithm adaptively selects the transmission range for each node according to the diversity of heterogeneous service requests and employs location and energy information in its dual-hop based routing procedure. Simulation results indicate that the proposed TDAD algorithm remarkably improves packet delivery rate with more balanced energy consumption when compared to the deviation angle-based single-hop (DAS) algorithm and the distributed sector-based (DS) routing algorithm.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"54 ","pages":"Article 100782"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A distance adaptive dual-hop routing algorithm for underwater optical wireless networks\",\"authors\":\"Jing Ji, Yinkang Dai, Yang Qiu\",\"doi\":\"10.1016/j.osn.2024.100782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three main kinds of underwater wireless communication, which employ acoustic waves, radio frequency and optical waves, have attracted intensive research interests in recently years. Among them, the underwater optical wireless communication (UOWC) is characterized by high propagation speed and large transmission bandwidth. But, the optical waves in underwater environment are significantly affected by absorption and scattering effects, which limit their transmission range. In order to enhance the performance of UOWC, designing a transmission and energy efficiency routing algorithm has become a non-ignorable issue in UOWC. In this paper, a transmission distance adaptive dual-hop (TDAD) routing algorithm is proposed for underwater optical wireless networks (UOWNs) to improve their efficiency in packet-delivery and energy-consumption. Unlike the existing routing algorithms designed for UOWNs, which pre-set the transmission range of network nodes, the proposed TDAD algorithm adaptively selects the transmission range for each node according to the diversity of heterogeneous service requests and employs location and energy information in its dual-hop based routing procedure. Simulation results indicate that the proposed TDAD algorithm remarkably improves packet delivery rate with more balanced energy consumption when compared to the deviation angle-based single-hop (DAS) algorithm and the distributed sector-based (DS) routing algorithm.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"54 \",\"pages\":\"Article 100782\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427724000122\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427724000122","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A distance adaptive dual-hop routing algorithm for underwater optical wireless networks
Three main kinds of underwater wireless communication, which employ acoustic waves, radio frequency and optical waves, have attracted intensive research interests in recently years. Among them, the underwater optical wireless communication (UOWC) is characterized by high propagation speed and large transmission bandwidth. But, the optical waves in underwater environment are significantly affected by absorption and scattering effects, which limit their transmission range. In order to enhance the performance of UOWC, designing a transmission and energy efficiency routing algorithm has become a non-ignorable issue in UOWC. In this paper, a transmission distance adaptive dual-hop (TDAD) routing algorithm is proposed for underwater optical wireless networks (UOWNs) to improve their efficiency in packet-delivery and energy-consumption. Unlike the existing routing algorithms designed for UOWNs, which pre-set the transmission range of network nodes, the proposed TDAD algorithm adaptively selects the transmission range for each node according to the diversity of heterogeneous service requests and employs location and energy information in its dual-hop based routing procedure. Simulation results indicate that the proposed TDAD algorithm remarkably improves packet delivery rate with more balanced energy consumption when compared to the deviation angle-based single-hop (DAS) algorithm and the distributed sector-based (DS) routing algorithm.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks