Alexandrine Pannard, Philippe Souchu, Christian Chauvin, Monique Delabuis, Chantal Gascuel-Odoux, Erik Jeppesen, Morgane Le Moal, Alain Ménesguen, Gilles Pinay, Nancy N. Rabalais, Yves Souchon, Elisabeth M. Gross
{"title":"富营养化的定义为何如此之多?","authors":"Alexandrine Pannard, Philippe Souchu, Christian Chauvin, Monique Delabuis, Chantal Gascuel-Odoux, Erik Jeppesen, Morgane Le Moal, Alain Ménesguen, Gilles Pinay, Nancy N. Rabalais, Yves Souchon, Elisabeth M. Gross","doi":"10.1002/ecm.1616","DOIUrl":null,"url":null,"abstract":"<p>Because of the first observations in the 1900s of the oligotrophic and eutrophic states of lakes, researchers have been interested in the process that makes lakes become turbid because of high phytoplankton biomass. Definitions of eutrophication have multiplied and diversified since the mid-20th century, more than for any other ecological process. Reasons for the high number of definitions might be that the former ones did not sufficiently describe their causes and/or consequences. Global change is bringing eutrophication more into the spotlight than ever, highlighting the need to find consensus on a common definition, or at least to explain and clarify why there are different meanings of the term eutrophication. To find common patterns, we analyzed 138 definitions that were classified by a multiple correspondence factor analysis (MCA) into three groups. The first group contains the most generic scientific definitions but many of these limit the causes to increased nutrient availability. A single definition takes into account all causes but would require additional work to clarify the process itself. Nutrient pollution, which is by far the primary cause of eutrophication in the Anthropocene, has generated a second group of environmental definitions that often specify the primary producers involved. Those definitions often mention the iconic consequences of nutrient pollution, such as increased algal biomass, anoxia/hypoxia and reduced biodiversity. The third group contains operational definitions, focusing on the consequences of nutrient pollution, for ecosystem services and therefore associated with ecosystem management issues. This group contains definitions related to regulations, mainly US laws and European directives. These numerous definitions, directly derived from the problem of nutrient pollution, have enlarged the landscape of definitions, and reflect the need to warn, legislate and implement a solution to remedy it. Satisfying this demand should not be confused with scientific research on eutrophication and must be based on communicating knowledge to as many people as possible using the simplest possible vocabulary. We propose that operational definitions (groups 2 and 3) should name the process “nutrient pollution,” making it possible to refine (scientific) definitions of eutrophication and to expand on other challenges such as climate warming, overfishing, and other nonnutrient-related chemical pollutions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1616","citationCount":"0","resultStr":"{\"title\":\"Why are there so many definitions of eutrophication?\",\"authors\":\"Alexandrine Pannard, Philippe Souchu, Christian Chauvin, Monique Delabuis, Chantal Gascuel-Odoux, Erik Jeppesen, Morgane Le Moal, Alain Ménesguen, Gilles Pinay, Nancy N. Rabalais, Yves Souchon, Elisabeth M. Gross\",\"doi\":\"10.1002/ecm.1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Because of the first observations in the 1900s of the oligotrophic and eutrophic states of lakes, researchers have been interested in the process that makes lakes become turbid because of high phytoplankton biomass. Definitions of eutrophication have multiplied and diversified since the mid-20th century, more than for any other ecological process. Reasons for the high number of definitions might be that the former ones did not sufficiently describe their causes and/or consequences. Global change is bringing eutrophication more into the spotlight than ever, highlighting the need to find consensus on a common definition, or at least to explain and clarify why there are different meanings of the term eutrophication. To find common patterns, we analyzed 138 definitions that were classified by a multiple correspondence factor analysis (MCA) into three groups. The first group contains the most generic scientific definitions but many of these limit the causes to increased nutrient availability. A single definition takes into account all causes but would require additional work to clarify the process itself. Nutrient pollution, which is by far the primary cause of eutrophication in the Anthropocene, has generated a second group of environmental definitions that often specify the primary producers involved. Those definitions often mention the iconic consequences of nutrient pollution, such as increased algal biomass, anoxia/hypoxia and reduced biodiversity. The third group contains operational definitions, focusing on the consequences of nutrient pollution, for ecosystem services and therefore associated with ecosystem management issues. This group contains definitions related to regulations, mainly US laws and European directives. These numerous definitions, directly derived from the problem of nutrient pollution, have enlarged the landscape of definitions, and reflect the need to warn, legislate and implement a solution to remedy it. Satisfying this demand should not be confused with scientific research on eutrophication and must be based on communicating knowledge to as many people as possible using the simplest possible vocabulary. We propose that operational definitions (groups 2 and 3) should name the process “nutrient pollution,” making it possible to refine (scientific) definitions of eutrophication and to expand on other challenges such as climate warming, overfishing, and other nonnutrient-related chemical pollutions.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"94 3\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1616\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1616\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1616","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Why are there so many definitions of eutrophication?
Because of the first observations in the 1900s of the oligotrophic and eutrophic states of lakes, researchers have been interested in the process that makes lakes become turbid because of high phytoplankton biomass. Definitions of eutrophication have multiplied and diversified since the mid-20th century, more than for any other ecological process. Reasons for the high number of definitions might be that the former ones did not sufficiently describe their causes and/or consequences. Global change is bringing eutrophication more into the spotlight than ever, highlighting the need to find consensus on a common definition, or at least to explain and clarify why there are different meanings of the term eutrophication. To find common patterns, we analyzed 138 definitions that were classified by a multiple correspondence factor analysis (MCA) into three groups. The first group contains the most generic scientific definitions but many of these limit the causes to increased nutrient availability. A single definition takes into account all causes but would require additional work to clarify the process itself. Nutrient pollution, which is by far the primary cause of eutrophication in the Anthropocene, has generated a second group of environmental definitions that often specify the primary producers involved. Those definitions often mention the iconic consequences of nutrient pollution, such as increased algal biomass, anoxia/hypoxia and reduced biodiversity. The third group contains operational definitions, focusing on the consequences of nutrient pollution, for ecosystem services and therefore associated with ecosystem management issues. This group contains definitions related to regulations, mainly US laws and European directives. These numerous definitions, directly derived from the problem of nutrient pollution, have enlarged the landscape of definitions, and reflect the need to warn, legislate and implement a solution to remedy it. Satisfying this demand should not be confused with scientific research on eutrophication and must be based on communicating knowledge to as many people as possible using the simplest possible vocabulary. We propose that operational definitions (groups 2 and 3) should name the process “nutrient pollution,” making it possible to refine (scientific) definitions of eutrophication and to expand on other challenges such as climate warming, overfishing, and other nonnutrient-related chemical pollutions.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.