利用机器学习方法,根据伊朗人口的高级人体测量指数预测 2 型糖尿病的 10 年发病率。

IF 6.1 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes research and clinical practice Pub Date : 2024-06-25 DOI:10.1016/j.diabres.2024.111755
Somayeh Ghiasi Hafezi , Maryam Saberi-Karimian , Morteza Ghasemi , Mark Ghamsary , Mohsen Moohebati , Habibollah Esmaily , Saba Maleki , Gordon A. Ferns , Maryam Alinezhad-Namaghi , Majid Ghayour-Mobarhan
{"title":"利用机器学习方法,根据伊朗人口的高级人体测量指数预测 2 型糖尿病的 10 年发病率。","authors":"Somayeh Ghiasi Hafezi ,&nbsp;Maryam Saberi-Karimian ,&nbsp;Morteza Ghasemi ,&nbsp;Mark Ghamsary ,&nbsp;Mohsen Moohebati ,&nbsp;Habibollah Esmaily ,&nbsp;Saba Maleki ,&nbsp;Gordon A. Ferns ,&nbsp;Maryam Alinezhad-Namaghi ,&nbsp;Majid Ghayour-Mobarhan","doi":"10.1016/j.diabres.2024.111755","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices.</p></div><div><h3>Methods</h3><p>This was a prospective cohort study comparing people with (n = 1256) and without (n = 5193) diabetes mellitus in phase II of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study.</p><p>The association of several anthropometric indices in phase I, including Body Mass Index (BMI), Body Adiposity Index (BAI), Abdominal Volume Index (AVI), Visceral Adiposity Index (VAI), Weight-Adjusted-Waist Index (WWI), Body Roundness Index (BRI), Body Surface Area (BSA), Conicity Index (C-Index) and Lipid Accumulation Product (LAP) with T2DM incidence (in phase II) were examined; using Logistic Regression (LR) and Decision Tree (DT) analysis.</p></div><div><h3>Results</h3><p>BMI followed by VAI and LAP were the best predictors of T2DM incidence. Participants with BMI &lt; 21.25 kg/m<sup>2</sup> and VAI <span><math><mrow><mo>≤</mo></mrow></math></span> 5.9 had a lower chance of diabetes than those with higher BMI and VAI levels (0.033 vs. 0.967 incident rate). For BMI &gt; 25 kg/m<sup>2</sup>, the chance of diabetes rapidly increased (OR = 2.27).</p></div><div><h3>Conclusions</h3><p>BMI, VAI, and LAP were the best predictors of T2DM incidence.</p></div>","PeriodicalId":11249,"journal":{"name":"Diabetes research and clinical practice","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the 10-year incidence of type 2 diabetes mellitus based on advanced anthropometric indices using machine learning methods in the Iranian population\",\"authors\":\"Somayeh Ghiasi Hafezi ,&nbsp;Maryam Saberi-Karimian ,&nbsp;Morteza Ghasemi ,&nbsp;Mark Ghamsary ,&nbsp;Mohsen Moohebati ,&nbsp;Habibollah Esmaily ,&nbsp;Saba Maleki ,&nbsp;Gordon A. Ferns ,&nbsp;Maryam Alinezhad-Namaghi ,&nbsp;Majid Ghayour-Mobarhan\",\"doi\":\"10.1016/j.diabres.2024.111755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices.</p></div><div><h3>Methods</h3><p>This was a prospective cohort study comparing people with (n = 1256) and without (n = 5193) diabetes mellitus in phase II of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study.</p><p>The association of several anthropometric indices in phase I, including Body Mass Index (BMI), Body Adiposity Index (BAI), Abdominal Volume Index (AVI), Visceral Adiposity Index (VAI), Weight-Adjusted-Waist Index (WWI), Body Roundness Index (BRI), Body Surface Area (BSA), Conicity Index (C-Index) and Lipid Accumulation Product (LAP) with T2DM incidence (in phase II) were examined; using Logistic Regression (LR) and Decision Tree (DT) analysis.</p></div><div><h3>Results</h3><p>BMI followed by VAI and LAP were the best predictors of T2DM incidence. Participants with BMI &lt; 21.25 kg/m<sup>2</sup> and VAI <span><math><mrow><mo>≤</mo></mrow></math></span> 5.9 had a lower chance of diabetes than those with higher BMI and VAI levels (0.033 vs. 0.967 incident rate). For BMI &gt; 25 kg/m<sup>2</sup>, the chance of diabetes rapidly increased (OR = 2.27).</p></div><div><h3>Conclusions</h3><p>BMI, VAI, and LAP were the best predictors of T2DM incidence.</p></div>\",\"PeriodicalId\":11249,\"journal\":{\"name\":\"Diabetes research and clinical practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes research and clinical practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016882272400665X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes research and clinical practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016882272400665X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:2 型糖尿病(T2DM)是一种日益严重的慢性疾病,可导致残疾和早死。本研究旨在建立一个基于新型人体测量指数的 T2DM 10 年发病率预测模型 方法:这是一项前瞻性队列研究,比较了马什哈德中风和心脏动脉粥样硬化疾病(MASHAD)研究第二阶段中的糖尿病患者(1256 人)和非糖尿病患者(5193 人)。在第一阶段研究中,研究人员研究了多项人体测量指数与 T2DM 发生率的关系,包括体重指数 (BMI)、身体肥胖指数 (BAI)、腹部容积指数 (AVI)、内脏脂肪指数 (VAI)、体重调整后腰围指数 (WWI)、身体圆度指数 (BRI)、体表面积 (BSA)、锥体指数 (C-Index) 和脂质累积乘积 (LAP)(在第二阶段研究中);采用逻辑回归(LR)和决策树(DT)分析。结果体重指数是预测 T2DM 发生率的最佳指标,其次是 VAI 和 LAP。BMI 为 2 且 VAI ≤ 5.9 的参与者比 BMI 和 VAI 水平较高的参与者患糖尿病的几率更低(0.033 对 0.967)。当体重指数大于 25 kg/m2 时,患糖尿病的几率迅速增加(OR = 2.27):结论:BMI、VAI 和 LAP 是预测 T2DM 发生率的最佳指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of the 10-year incidence of type 2 diabetes mellitus based on advanced anthropometric indices using machine learning methods in the Iranian population

Background

Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices.

Methods

This was a prospective cohort study comparing people with (n = 1256) and without (n = 5193) diabetes mellitus in phase II of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study.

The association of several anthropometric indices in phase I, including Body Mass Index (BMI), Body Adiposity Index (BAI), Abdominal Volume Index (AVI), Visceral Adiposity Index (VAI), Weight-Adjusted-Waist Index (WWI), Body Roundness Index (BRI), Body Surface Area (BSA), Conicity Index (C-Index) and Lipid Accumulation Product (LAP) with T2DM incidence (in phase II) were examined; using Logistic Regression (LR) and Decision Tree (DT) analysis.

Results

BMI followed by VAI and LAP were the best predictors of T2DM incidence. Participants with BMI < 21.25 kg/m2 and VAI  5.9 had a lower chance of diabetes than those with higher BMI and VAI levels (0.033 vs. 0.967 incident rate). For BMI > 25 kg/m2, the chance of diabetes rapidly increased (OR = 2.27).

Conclusions

BMI, VAI, and LAP were the best predictors of T2DM incidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes research and clinical practice
Diabetes research and clinical practice 医学-内分泌学与代谢
CiteScore
10.30
自引率
3.90%
发文量
862
审稿时长
32 days
期刊介绍: Diabetes Research and Clinical Practice is an international journal for health-care providers and clinically oriented researchers that publishes high-quality original research articles and expert reviews in diabetes and related areas. The role of the journal is to provide a venue for dissemination of knowledge and discussion of topics related to diabetes clinical research and patient care. Topics of focus include translational science, genetics, immunology, nutrition, psychosocial research, epidemiology, prevention, socio-economic research, complications, new treatments, technologies and therapy.
期刊最新文献
The effectiveness of continuous glucose monitoring with remote telemonitoring-enabled virtual educator visits in adults with non-insulin dependent type 2 diabetes: A randomized trial Time in range and mean glucose cut-off points for reduction of fetal outcomes in pregnant women with type 1 diabetes using automated insulin delivery systems Cardiovascular disease modifies the relationship between systolic blood pressure and outcomes in people with diabetes Let's put well-being at the heart of diabetes care. Real-world efficacy and safety of open-source automated insulin delivery for people with type 1 diabetes mellitus: Experience from mainland China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1