{"title":"餐后氧化应激的营养负荷与糖尿病的病因。","authors":"Fangzhou He, Junshi Liu, Yuanding Huang, Lan Chen, Ehsan Parvaresh Rizi, Zhang Ke, Lijing Ke, Tze Ping Loh, Meng Niu, Weng Kung Peng","doi":"10.1038/s41538-024-00282-x","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-11"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus\",\"authors\":\"Fangzhou He, Junshi Liu, Yuanding Huang, Lan Chen, Ehsan Parvaresh Rizi, Zhang Ke, Lijing Ke, Tze Ping Loh, Meng Niu, Weng Kung Peng\",\"doi\":\"10.1038/s41538-024-00282-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-024-00282-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00282-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus
Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.