{"title":"利用图卷积神经网络从脑电信号预测特定脑区的自闭症。","authors":"Neha Prerna Tigga, Shruti Garg, Nishant Goyal, Justin Raj, Basudeb Das","doi":"10.3233/THC-240550","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain variations are responsible for developmental impairments, including autism spectrum disorder (ASD). EEG signals efficiently detect neurological conditions by revealing crucial information about brain function abnormalities.</p><p><strong>Objective: </strong>This study aims to utilize EEG data collected from both autistic and typically developing children to investigate the potential of a Graph Convolutional Neural Network (GCNN) in predicting ASD based on neurological abnormalities revealed through EEG signals.</p><p><strong>Methods: </strong>In this study, EEG data were gathered from eight autistic children and eight typically developing children diagnosed using the Childhood Autism Rating Scale at the Central Institute of Psychiatry, Ranchi. EEG recording was done using a HydroCel GSN with 257 channels, and 71 channels with 10-10 international equivalents were utilized. Electrodes were divided into 12 brain regions. A GCNN was introduced for ASD prediction, preceded by autoregressive and spectral feature extraction.</p><p><strong>Results: </strong>The anterior-frontal brain region, crucial for cognitive functions like emotion, memory, and social interaction, proved most predictive of ASD, achieving 87.07% accuracy. This underscores the suitability of the GCNN method for EEG-based ASD detection.</p><p><strong>Conclusion: </strong>The detailed dataset collected enhances understanding of the neurological basis of ASD, benefiting healthcare practitioners involved in ASD diagnosis.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network.\",\"authors\":\"Neha Prerna Tigga, Shruti Garg, Nishant Goyal, Justin Raj, Basudeb Das\",\"doi\":\"10.3233/THC-240550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brain variations are responsible for developmental impairments, including autism spectrum disorder (ASD). EEG signals efficiently detect neurological conditions by revealing crucial information about brain function abnormalities.</p><p><strong>Objective: </strong>This study aims to utilize EEG data collected from both autistic and typically developing children to investigate the potential of a Graph Convolutional Neural Network (GCNN) in predicting ASD based on neurological abnormalities revealed through EEG signals.</p><p><strong>Methods: </strong>In this study, EEG data were gathered from eight autistic children and eight typically developing children diagnosed using the Childhood Autism Rating Scale at the Central Institute of Psychiatry, Ranchi. EEG recording was done using a HydroCel GSN with 257 channels, and 71 channels with 10-10 international equivalents were utilized. Electrodes were divided into 12 brain regions. A GCNN was introduced for ASD prediction, preceded by autoregressive and spectral feature extraction.</p><p><strong>Results: </strong>The anterior-frontal brain region, crucial for cognitive functions like emotion, memory, and social interaction, proved most predictive of ASD, achieving 87.07% accuracy. This underscores the suitability of the GCNN method for EEG-based ASD detection.</p><p><strong>Conclusion: </strong>The detailed dataset collected enhances understanding of the neurological basis of ASD, benefiting healthcare practitioners involved in ASD diagnosis.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-240550\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network.
Background: Brain variations are responsible for developmental impairments, including autism spectrum disorder (ASD). EEG signals efficiently detect neurological conditions by revealing crucial information about brain function abnormalities.
Objective: This study aims to utilize EEG data collected from both autistic and typically developing children to investigate the potential of a Graph Convolutional Neural Network (GCNN) in predicting ASD based on neurological abnormalities revealed through EEG signals.
Methods: In this study, EEG data were gathered from eight autistic children and eight typically developing children diagnosed using the Childhood Autism Rating Scale at the Central Institute of Psychiatry, Ranchi. EEG recording was done using a HydroCel GSN with 257 channels, and 71 channels with 10-10 international equivalents were utilized. Electrodes were divided into 12 brain regions. A GCNN was introduced for ASD prediction, preceded by autoregressive and spectral feature extraction.
Results: The anterior-frontal brain region, crucial for cognitive functions like emotion, memory, and social interaction, proved most predictive of ASD, achieving 87.07% accuracy. This underscores the suitability of the GCNN method for EEG-based ASD detection.
Conclusion: The detailed dataset collected enhances understanding of the neurological basis of ASD, benefiting healthcare practitioners involved in ASD diagnosis.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).