Lingfang Tang, Daixi Zhou, Jiayue Hu and Mingshan Zhu
{"title":"新晋研究人员系列:利用空位缺陷材料活化过硫酸盐的最新进展:空位的作用","authors":"Lingfang Tang, Daixi Zhou, Jiayue Hu and Mingshan Zhu","doi":"10.1039/D4EN00430B","DOIUrl":null,"url":null,"abstract":"<p >The utilization of persulfate (PS) as the cornerstone of advanced oxidation processes (AOPs) is an emerging and powerful method for eliminating persistent organic pollutants in wastewater. The efficient activation of PS is a prerequisite factor in this technology. Through the strategic application of vacancy defect engineering, catalytic materials can be optimized to improve PS activation. In this review, our exploration focuses on clarifying the key role of vacancy defects in promoting PS activation and summarizing the potential mechanisms of PS activation. In addition, six widely used advanced characterization techniques and density functional theory (DFT) calculations are introduced to characterize vacancies in materials. Furthermore, we systematically summarize the methods of vacancy generation and introduce common different types of vacancy defect catalytic materials and their applications. Finally, we summarize and present the enhancement of PS activation by vacancy defect materials. This review provides new insights for us to understand the mechanism of vacancy defect materials promoting PS activation and its future development, hoping to design more efficient catalysts in the future for environment remediation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging investigator series: recent progress on the activation of persulfate by vacancy defect materials: the role of vacancies\",\"authors\":\"Lingfang Tang, Daixi Zhou, Jiayue Hu and Mingshan Zhu\",\"doi\":\"10.1039/D4EN00430B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The utilization of persulfate (PS) as the cornerstone of advanced oxidation processes (AOPs) is an emerging and powerful method for eliminating persistent organic pollutants in wastewater. The efficient activation of PS is a prerequisite factor in this technology. Through the strategic application of vacancy defect engineering, catalytic materials can be optimized to improve PS activation. In this review, our exploration focuses on clarifying the key role of vacancy defects in promoting PS activation and summarizing the potential mechanisms of PS activation. In addition, six widely used advanced characterization techniques and density functional theory (DFT) calculations are introduced to characterize vacancies in materials. Furthermore, we systematically summarize the methods of vacancy generation and introduce common different types of vacancy defect catalytic materials and their applications. Finally, we summarize and present the enhancement of PS activation by vacancy defect materials. This review provides new insights for us to understand the mechanism of vacancy defect materials promoting PS activation and its future development, hoping to design more efficient catalysts in the future for environment remediation.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00430b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00430b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging investigator series: recent progress on the activation of persulfate by vacancy defect materials: the role of vacancies
The utilization of persulfate (PS) as the cornerstone of advanced oxidation processes (AOPs) is an emerging and powerful method for eliminating persistent organic pollutants in wastewater. The efficient activation of PS is a prerequisite factor in this technology. Through the strategic application of vacancy defect engineering, catalytic materials can be optimized to improve PS activation. In this review, our exploration focuses on clarifying the key role of vacancy defects in promoting PS activation and summarizing the potential mechanisms of PS activation. In addition, six widely used advanced characterization techniques and density functional theory (DFT) calculations are introduced to characterize vacancies in materials. Furthermore, we systematically summarize the methods of vacancy generation and introduce common different types of vacancy defect catalytic materials and their applications. Finally, we summarize and present the enhancement of PS activation by vacancy defect materials. This review provides new insights for us to understand the mechanism of vacancy defect materials promoting PS activation and its future development, hoping to design more efficient catalysts in the future for environment remediation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.