干血斑中蛋白质稳定性的时间评估

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2024-07-01 DOI:10.1021/acs.jproteome.4c00233
Weifen Sun, Ao Huang, Shubo Wen, Ruicong Yang, Xiling Liu
{"title":"干血斑中蛋白质稳定性的时间评估","authors":"Weifen Sun, Ao Huang, Shubo Wen, Ruicong Yang, Xiling Liu","doi":"10.1021/acs.jproteome.4c00233","DOIUrl":null,"url":null,"abstract":"<p><p>The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Assessment of Protein Stability in Dried Blood Spots.\",\"authors\":\"Weifen Sun, Ao Huang, Shubo Wen, Ruicong Yang, Xiling Liu\",\"doi\":\"10.1021/acs.jproteome.4c00233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00233\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00233","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在临床环境中使用血液中的蛋白质生物标志物受到传统静脉穿刺采样的成本和可及性的限制。干血斑(DBS)技术提供了一种创伤更小、更容易获得的替代方法。然而,DBS 中蛋白质的稳定性还没有得到很好的评估。在此,我们使用定量 LC-MS/MS 系统构建了全血、干血斑、血浆和血细胞的蛋白质组图谱。在血液干燥成血斑的过程中,约有 4% 检测到的蛋白质丰度发生了显著变化,其中细胞质部分受到了极大干扰。我们还报告了一项新发现,即膜/骨架蛋白(SLC4A1、RHAG、DSC1、DSP 和 JUP)水平降低,而与细胞内运输相关的蛋白(ATG3、SEC14L4 和 NRBP1)水平升高。此外,我们还在室温保存长达 6 个月的 DBS 样品中发现了 19 种具有时间动态变化的蛋白质。其中以三个下降的细胞骨架相关蛋白(RDX、SH3BGRL3 和 MYH9)和四个升高的参与细胞质运输的蛋白(XPO7、RAN、SLC2A1 和 SLC29A1)为代表。不稳定性主要受亲水蛋白的影响,并随着储存时间的延长而显著增强。我们的分析提供了有关 DBS 蛋白质短期和长期储存稳定性的全面知识,为 DBS 在临床蛋白质组学和其他分析应用中的广泛应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal Assessment of Protein Stability in Dried Blood Spots.

The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe. Identification of Candidate Protein Biomarkers Associated with Domoic Acid Toxicosis in Cerebrospinal Fluid of California Sea Lions (Zalophus californianus). Meta-Analysis of Rice Phosphoproteomics Data to Understand Variation in Cell Signaling Across the Rice Pan-Genome. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. Streamlining the Analysis of Proteins from Snake Venom.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1