(Na0.5Bi0.5)TiO3基无铅陶瓷在低电场下的高储能性能和显著的介电温度稳定性

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2024-06-26 DOI:10.1016/j.solidstatesciences.2024.107616
Yating Ning, Yongping Pu, Zhemin Chen, Zixiong Sun, Lei Zhang, Qi Zhang, Chunhui Wu
{"title":"(Na0.5Bi0.5)TiO3基无铅陶瓷在低电场下的高储能性能和显著的介电温度稳定性","authors":"Yating Ning,&nbsp;Yongping Pu,&nbsp;Zhemin Chen,&nbsp;Zixiong Sun,&nbsp;Lei Zhang,&nbsp;Qi Zhang,&nbsp;Chunhui Wu","doi":"10.1016/j.solidstatesciences.2024.107616","DOIUrl":null,"url":null,"abstract":"<div><p>Lead-free ceramic capacitors with superior energy storage properties and dielectric temperature stability are urgent needs for pulsed power devices. However, the risk of high voltage suppresses the improvement of comprehensive performance. Thus, a novel (1-<em>x</em>)(0.55Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-0.45Ba<sub>0.85</sub>Ca<sub>0.15</sub>Zr<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>3</sub>)-<em>x</em>Bi(Mg<sub>2/3</sub>Ta<sub>1/3</sub>)O<sub>3</sub> (NBBCZT-<em>x</em>BMT) ceramics were successfully synthesized to address the above concerns. The addition of BMT is beneficial to maintaining high polarization strength, improving the breakdown strength and optimizing relaxor behavior. As a result, the optimum component exhibits excellent energy storage capability (<em>W</em><sub>rec</sub> = 3.05 J/cm<sup>3</sup>, <em>η</em> = 94.3 %) at 190 kV/cm and dielectric temperature stability (TCC ≤ ±10 % from 33 to 348 °C, tan<em>δ</em> ≤ 0.01 from 50 to 389 °C). Moreover, the corresponding sample maintains a variation of <em>W</em><sub>rec</sub> less than 6.7 % and <em>η</em> less than 1.6 % at 20–140 °C and 1–100 Hz. These results provide a novel candidate for high-performance ceramic capacitors under low electric fields.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High energy storage performance under low electric fields and remarkable dielectric temperature stability in (Na0.5Bi0.5)TiO3-based lead-free ceramics\",\"authors\":\"Yating Ning,&nbsp;Yongping Pu,&nbsp;Zhemin Chen,&nbsp;Zixiong Sun,&nbsp;Lei Zhang,&nbsp;Qi Zhang,&nbsp;Chunhui Wu\",\"doi\":\"10.1016/j.solidstatesciences.2024.107616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lead-free ceramic capacitors with superior energy storage properties and dielectric temperature stability are urgent needs for pulsed power devices. However, the risk of high voltage suppresses the improvement of comprehensive performance. Thus, a novel (1-<em>x</em>)(0.55Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-0.45Ba<sub>0.85</sub>Ca<sub>0.15</sub>Zr<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>3</sub>)-<em>x</em>Bi(Mg<sub>2/3</sub>Ta<sub>1/3</sub>)O<sub>3</sub> (NBBCZT-<em>x</em>BMT) ceramics were successfully synthesized to address the above concerns. The addition of BMT is beneficial to maintaining high polarization strength, improving the breakdown strength and optimizing relaxor behavior. As a result, the optimum component exhibits excellent energy storage capability (<em>W</em><sub>rec</sub> = 3.05 J/cm<sup>3</sup>, <em>η</em> = 94.3 %) at 190 kV/cm and dielectric temperature stability (TCC ≤ ±10 % from 33 to 348 °C, tan<em>δ</em> ≤ 0.01 from 50 to 389 °C). Moreover, the corresponding sample maintains a variation of <em>W</em><sub>rec</sub> less than 6.7 % and <em>η</em> less than 1.6 % at 20–140 °C and 1–100 Hz. These results provide a novel candidate for high-performance ceramic capacitors under low electric fields.</p></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129325582400181X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129325582400181X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

无铅陶瓷电容器具有卓越的储能特性和介电温度稳定性,是脉冲功率设备的迫切需要。然而,高电压的风险抑制了综合性能的提高。因此,为了解决上述问题,我们成功合成了一种新型 (1-x)(0.55Na0.5Bi0.5TiO3-0.45Ba0.85Ca0.15Zr0.1Ti0.9O3)-xBi(Mg2/3Ta1/3)O3(NBBCZT-xBMT)陶瓷。添加 BMT 有利于保持高极化强度、提高击穿强度和优化弛豫器行为。因此,最佳成分在 190 kV/cm 下具有出色的储能能力(Wrec = 3.05 J/cm3,η = 94.3 %)和介电温度稳定性(TCC 在 33 至 348 °C 之间≤ ±10 %,tanδ 在 50 至 389 °C 之间≤ 0.01)。此外,在 20-140 °C 和 1-100 Hz 的条件下,相应样品的 Wrec 变化率小于 6.7 %,η 变化率小于 1.6 %。这些结果为低电场下的高性能陶瓷电容器提供了一种新的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High energy storage performance under low electric fields and remarkable dielectric temperature stability in (Na0.5Bi0.5)TiO3-based lead-free ceramics

Lead-free ceramic capacitors with superior energy storage properties and dielectric temperature stability are urgent needs for pulsed power devices. However, the risk of high voltage suppresses the improvement of comprehensive performance. Thus, a novel (1-x)(0.55Na0.5Bi0.5TiO3-0.45Ba0.85Ca0.15Zr0.1Ti0.9O3)-xBi(Mg2/3Ta1/3)O3 (NBBCZT-xBMT) ceramics were successfully synthesized to address the above concerns. The addition of BMT is beneficial to maintaining high polarization strength, improving the breakdown strength and optimizing relaxor behavior. As a result, the optimum component exhibits excellent energy storage capability (Wrec = 3.05 J/cm3, η = 94.3 %) at 190 kV/cm and dielectric temperature stability (TCC ≤ ±10 % from 33 to 348 °C, tanδ ≤ 0.01 from 50 to 389 °C). Moreover, the corresponding sample maintains a variation of Wrec less than 6.7 % and η less than 1.6 % at 20–140 °C and 1–100 Hz. These results provide a novel candidate for high-performance ceramic capacitors under low electric fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Study of substrate dependent microstructural properties of sputtered Mo/CZTS heterojunctions using X ray diffraction ZnO/Zn3(PO4)2/CeO2 photocatalysts formed on zinc by plasma electrolytic oxidation Synthesis of Nd2Sn2O7 pyrochlore with different lattice disorder degrees and oxygen vacancy contents Influence of crystalline phase structure of rare earth oxides on active oxygen and basic sites Crystal structures of the R1.33Ni3Ga8 (R = Tb, Ho, Er, Tm, Lu) compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1