生物工程体外血管化肝脏组织模型的发展现状与机遇

Q1 Computer Science Bioprinting Pub Date : 2024-06-27 DOI:10.1016/j.bprint.2024.e00350
Kshama Kumari , Arka Sanyal , Preeti Rawat , Vinit Kumar , Manoj Garg , Debrupa Lahiri , Sourabh Ghosh , Prakash Baligar
{"title":"生物工程体外血管化肝脏组织模型的发展现状与机遇","authors":"Kshama Kumari ,&nbsp;Arka Sanyal ,&nbsp;Preeti Rawat ,&nbsp;Vinit Kumar ,&nbsp;Manoj Garg ,&nbsp;Debrupa Lahiri ,&nbsp;Sourabh Ghosh ,&nbsp;Prakash Baligar","doi":"10.1016/j.bprint.2024.e00350","DOIUrl":null,"url":null,"abstract":"<div><p>The complications in liver functioning arising due to hepatic disorders are a major contributor of mortality worldwide, with transplantation being the only resort for patients with severe cases. Due to liver's direct role in drug metabolism, fabrication on functional liver tissue models is eventually becoming a necessity for high-throughput drug screening applications. Tissue engineering approaches could provide an answer to the drooping supply by allowing for the fabrication and printing of a fully operational, implantable, and sustainable liver tissues. Moreover, such bioengineered tissues can be made to resemble their native counterparts. 3D bioengineering strategies including 3D bioprinting and microfluidic-based liver-on-chip models stand out in this regard due to their potential to create physiologically relevant microenvironment/niches for the biofabricated tissues. Nonetheless, achieving vascularization in such bioengineered tissues is still considered one of the biggest bottlenecks for engineers. The incorporation of blood vessels made from endothelial cells (ECs) is addressed in vasculogenesis while angiogenesis investigates generating new vessels from preexisting vasculature. Overall, vascularization is essential for the survival, function, and integration of bioprinted liver tissues, making it a key focus area in the development of functional liver substitutes for regenerative medicine and drug testing applications. This review paper focuses on the opportunities and difficulties of performing vascularization and angiogenesis in 3D bioengineered-based liver tissue models. Particularly, this paper delves into aspects such as methods of bioengineering, bioinks used, analysis techniques, advantages, limitations, and prospects related to 3D bioengineered liver tissue models as well as vascular engineering in general.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current landscape and opportunities in the development of bioengineered in-vitro vascularized liver tissue models\",\"authors\":\"Kshama Kumari ,&nbsp;Arka Sanyal ,&nbsp;Preeti Rawat ,&nbsp;Vinit Kumar ,&nbsp;Manoj Garg ,&nbsp;Debrupa Lahiri ,&nbsp;Sourabh Ghosh ,&nbsp;Prakash Baligar\",\"doi\":\"10.1016/j.bprint.2024.e00350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complications in liver functioning arising due to hepatic disorders are a major contributor of mortality worldwide, with transplantation being the only resort for patients with severe cases. Due to liver's direct role in drug metabolism, fabrication on functional liver tissue models is eventually becoming a necessity for high-throughput drug screening applications. Tissue engineering approaches could provide an answer to the drooping supply by allowing for the fabrication and printing of a fully operational, implantable, and sustainable liver tissues. Moreover, such bioengineered tissues can be made to resemble their native counterparts. 3D bioengineering strategies including 3D bioprinting and microfluidic-based liver-on-chip models stand out in this regard due to their potential to create physiologically relevant microenvironment/niches for the biofabricated tissues. Nonetheless, achieving vascularization in such bioengineered tissues is still considered one of the biggest bottlenecks for engineers. The incorporation of blood vessels made from endothelial cells (ECs) is addressed in vasculogenesis while angiogenesis investigates generating new vessels from preexisting vasculature. Overall, vascularization is essential for the survival, function, and integration of bioprinted liver tissues, making it a key focus area in the development of functional liver substitutes for regenerative medicine and drug testing applications. This review paper focuses on the opportunities and difficulties of performing vascularization and angiogenesis in 3D bioengineered-based liver tissue models. Particularly, this paper delves into aspects such as methods of bioengineering, bioinks used, analysis techniques, advantages, limitations, and prospects related to 3D bioengineered liver tissue models as well as vascular engineering in general.</p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886624000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

肝功能失调引起的肝功能并发症是导致全球死亡的主要原因,移植是重症患者的唯一选择。由于肝脏在药物代谢中的直接作用,功能性肝脏组织模型的制造最终成为高通量药物筛选应用的必需品。组织工程方法可以制造和打印出完全可操作、可植入和可持续的肝脏组织,从而解决供应不足的问题。此外,这种生物工程组织还可以制作成与原生组织相似的组织。三维生物工程策略,包括三维生物打印和基于微流控的片上肝脏模型,在这方面尤为突出,因为它们有可能为生物制造的组织创造与生理相关的微环境/壁龛。然而,在这类生物工程组织中实现血管化仍被认为是工程师面临的最大瓶颈之一。血管生成中涉及内皮细胞(ECs)生成血管的问题,而血管生成则研究如何从已有的血管中生成新的血管。总之,血管生成对生物打印肝组织的存活、功能和整合至关重要,因此是再生医学和药物测试应用中开发功能性肝脏替代品的关键重点领域。本综述论文重点探讨了在基于三维生物工程的肝组织模型中进行血管化和血管生成的机遇和困难。特别是,本文深入探讨了与三维生物工程肝组织模型以及一般血管工程相关的生物工程方法、所用生物墨水、分析技术、优势、局限性和前景等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current landscape and opportunities in the development of bioengineered in-vitro vascularized liver tissue models

The complications in liver functioning arising due to hepatic disorders are a major contributor of mortality worldwide, with transplantation being the only resort for patients with severe cases. Due to liver's direct role in drug metabolism, fabrication on functional liver tissue models is eventually becoming a necessity for high-throughput drug screening applications. Tissue engineering approaches could provide an answer to the drooping supply by allowing for the fabrication and printing of a fully operational, implantable, and sustainable liver tissues. Moreover, such bioengineered tissues can be made to resemble their native counterparts. 3D bioengineering strategies including 3D bioprinting and microfluidic-based liver-on-chip models stand out in this regard due to their potential to create physiologically relevant microenvironment/niches for the biofabricated tissues. Nonetheless, achieving vascularization in such bioengineered tissues is still considered one of the biggest bottlenecks for engineers. The incorporation of blood vessels made from endothelial cells (ECs) is addressed in vasculogenesis while angiogenesis investigates generating new vessels from preexisting vasculature. Overall, vascularization is essential for the survival, function, and integration of bioprinted liver tissues, making it a key focus area in the development of functional liver substitutes for regenerative medicine and drug testing applications. This review paper focuses on the opportunities and difficulties of performing vascularization and angiogenesis in 3D bioengineered-based liver tissue models. Particularly, this paper delves into aspects such as methods of bioengineering, bioinks used, analysis techniques, advantages, limitations, and prospects related to 3D bioengineered liver tissue models as well as vascular engineering in general.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
3D and 4D printed materials for cardiac transplantation: Advances in biogenerative engineering Evolution of toxicity testing platforms from 2D to advanced 3D bioprinting for safety assessment of drugs Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1