量化量子:从临床数据中确定发射率

Benjamin Jones , Christopher Iddon , Max Sherman
{"title":"量化量子:从临床数据中确定发射率","authors":"Benjamin Jones ,&nbsp;Christopher Iddon ,&nbsp;Max Sherman","doi":"10.1016/j.indenv.2024.100025","DOIUrl":null,"url":null,"abstract":"<div><p>It is important to quantify uncertainty in the viable genomic material encapsulated in the respiratory particles emitted by infected people so that it can be converted into an emission rate as a function of respiratory and metabolic activities and used to estimate the probability of infection for an indoor scenario. Clinical measurements of viral loads for SARS-CoV-2 made using infection surveys, Gesundheit-II samplers, and human challenge studies are evaluated and a mathematical model is derived to estimate the quantum emission rate as a function of the genomic and viable viral loads. Modelled emission rates for SARS-CoV-2 agree with clinical data above detection limits. The viral load is found to vary over at least 6 orders of magnitude because it is person and time dependent, and contingent on many other factors that are difficult to quantify. It is similarly large for other respiratory pathogens. Therefore, the genomic and viable-virion emission rates display similar heterogeneity. When emission rates are used to estimate absolute infection risk using the Wells-Riley model, the predictions are so uncertain that they cannot be used in any meaningful way to provide useful quantitative guidance for designing indoor spaces.</p></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"1 3","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950362024000225/pdfft?md5=2985f981ba2cfeb37473654ed5e31395&pid=1-s2.0-S2950362024000225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantifying quanta: Determining emission rates from clinical data\",\"authors\":\"Benjamin Jones ,&nbsp;Christopher Iddon ,&nbsp;Max Sherman\",\"doi\":\"10.1016/j.indenv.2024.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is important to quantify uncertainty in the viable genomic material encapsulated in the respiratory particles emitted by infected people so that it can be converted into an emission rate as a function of respiratory and metabolic activities and used to estimate the probability of infection for an indoor scenario. Clinical measurements of viral loads for SARS-CoV-2 made using infection surveys, Gesundheit-II samplers, and human challenge studies are evaluated and a mathematical model is derived to estimate the quantum emission rate as a function of the genomic and viable viral loads. Modelled emission rates for SARS-CoV-2 agree with clinical data above detection limits. The viral load is found to vary over at least 6 orders of magnitude because it is person and time dependent, and contingent on many other factors that are difficult to quantify. It is similarly large for other respiratory pathogens. Therefore, the genomic and viable-virion emission rates display similar heterogeneity. When emission rates are used to estimate absolute infection risk using the Wells-Riley model, the predictions are so uncertain that they cannot be used in any meaningful way to provide useful quantitative guidance for designing indoor spaces.</p></div>\",\"PeriodicalId\":100665,\"journal\":{\"name\":\"Indoor Environments\",\"volume\":\"1 3\",\"pages\":\"Article 100025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950362024000225/pdfft?md5=2985f981ba2cfeb37473654ed5e31395&pid=1-s2.0-S2950362024000225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950362024000225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362024000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重要的是要量化感染者散发的呼吸道微粒中包裹的可存活基因组物质的不确定性,以便将其转化为与呼吸和代谢活动相关的散发率,并用于估算室内情况下的感染概率。利用感染调查、Gesundheit-II 采样器和人体挑战研究对 SARS-CoV-2 病毒载量的临床测量结果进行了评估,并推导出一个数学模型,用于估算作为基因组和存活病毒载量函数的量子排放率。建模得出的 SARS-CoV-2 发射率与高于检测限的临床数据一致。病毒载量至少有 6 个数量级的变化,因为它与人和时间有关,并取决于其他许多难以量化的因素。其他呼吸道病原体的病毒量也同样很大。因此,基因组和存活病毒的排放率也显示出类似的异质性。当使用 Wells-Riley 模型来估算绝对感染风险时,排放率的预测结果非常不确定,无法以任何有意义的方式为室内空间的设计提供有用的定量指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying quanta: Determining emission rates from clinical data

It is important to quantify uncertainty in the viable genomic material encapsulated in the respiratory particles emitted by infected people so that it can be converted into an emission rate as a function of respiratory and metabolic activities and used to estimate the probability of infection for an indoor scenario. Clinical measurements of viral loads for SARS-CoV-2 made using infection surveys, Gesundheit-II samplers, and human challenge studies are evaluated and a mathematical model is derived to estimate the quantum emission rate as a function of the genomic and viable viral loads. Modelled emission rates for SARS-CoV-2 agree with clinical data above detection limits. The viral load is found to vary over at least 6 orders of magnitude because it is person and time dependent, and contingent on many other factors that are difficult to quantify. It is similarly large for other respiratory pathogens. Therefore, the genomic and viable-virion emission rates display similar heterogeneity. When emission rates are used to estimate absolute infection risk using the Wells-Riley model, the predictions are so uncertain that they cannot be used in any meaningful way to provide useful quantitative guidance for designing indoor spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to “Ventilation characteristics in a hospital where a COVID-19 outbreak occurred in the winter of 2020” [Indoor Environ. 2 (2025) 100065] Implementing Bayesian inference on a stochastic CO2-based grey-box model CO2 levels and SARS-CoV-2 transmission in public schools: A retrospective cohort study in Montreal (Canada) Cognition, economic decision-making, and physiological response to carbon dioxide Personal air cleaning by a user-tracking robot equipped with a nanofiber air cleaner in a large work space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1