Bhagvat D Jadhav , Pravin Marotrao Ghate , Prabhakar Narasappa Kota , Shankar Dattatray Chavan , Pravin Balaso Chopade
{"title":"利用卫星图像进行干旱预测的优化网络","authors":"Bhagvat D Jadhav , Pravin Marotrao Ghate , Prabhakar Narasappa Kota , Shankar Dattatray Chavan , Pravin Balaso Chopade","doi":"10.1016/j.rsase.2024.101278","DOIUrl":null,"url":null,"abstract":"<div><p>The change in climate and the hot temperature environment increased the risk of drought around the workplace. Predicting and forecasting the drought occurrence is essential for managing water resources and agricultural plans. Therefore, in this study, a novel Chimp-based Wide ResNet Prediction Framework (CWRPF) is designed to predict the drought. The key motive of the presented research is to predict the drought and no drought conditions derived from the satellite images. The satellite images are collected from the Bhuvan site. Initially, the satellite images are noise-filtered. The filtered images are then injected into the feature analysis phase to compute the drought indices of a specific area by the fitness function activated in the framework. After estimating the drought indices, the drought condition was categorized. Finally, the designed system is tested in the MATLAB platform and has gained more significant results by providing a 97.68% accuracy rate, R2 as 0.998, and lower RMSE and MAE values of 0.223 and 0.193. The accumulated results are compared with existing techniques to validate the improvement score. The accuracy of the CWRPF is more remarkable than that of other prediction models. Therefore, the system is efficient for drought prediction in satellite images.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101278"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized network for drought prediction using satellite images\",\"authors\":\"Bhagvat D Jadhav , Pravin Marotrao Ghate , Prabhakar Narasappa Kota , Shankar Dattatray Chavan , Pravin Balaso Chopade\",\"doi\":\"10.1016/j.rsase.2024.101278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The change in climate and the hot temperature environment increased the risk of drought around the workplace. Predicting and forecasting the drought occurrence is essential for managing water resources and agricultural plans. Therefore, in this study, a novel Chimp-based Wide ResNet Prediction Framework (CWRPF) is designed to predict the drought. The key motive of the presented research is to predict the drought and no drought conditions derived from the satellite images. The satellite images are collected from the Bhuvan site. Initially, the satellite images are noise-filtered. The filtered images are then injected into the feature analysis phase to compute the drought indices of a specific area by the fitness function activated in the framework. After estimating the drought indices, the drought condition was categorized. Finally, the designed system is tested in the MATLAB platform and has gained more significant results by providing a 97.68% accuracy rate, R2 as 0.998, and lower RMSE and MAE values of 0.223 and 0.193. The accumulated results are compared with existing techniques to validate the improvement score. The accuracy of the CWRPF is more remarkable than that of other prediction models. Therefore, the system is efficient for drought prediction in satellite images.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101278\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An optimized network for drought prediction using satellite images
The change in climate and the hot temperature environment increased the risk of drought around the workplace. Predicting and forecasting the drought occurrence is essential for managing water resources and agricultural plans. Therefore, in this study, a novel Chimp-based Wide ResNet Prediction Framework (CWRPF) is designed to predict the drought. The key motive of the presented research is to predict the drought and no drought conditions derived from the satellite images. The satellite images are collected from the Bhuvan site. Initially, the satellite images are noise-filtered. The filtered images are then injected into the feature analysis phase to compute the drought indices of a specific area by the fitness function activated in the framework. After estimating the drought indices, the drought condition was categorized. Finally, the designed system is tested in the MATLAB platform and has gained more significant results by providing a 97.68% accuracy rate, R2 as 0.998, and lower RMSE and MAE values of 0.223 and 0.193. The accumulated results are compared with existing techniques to validate the improvement score. The accuracy of the CWRPF is more remarkable than that of other prediction models. Therefore, the system is efficient for drought prediction in satellite images.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems