作为公共部门数字化转型推动力的开放式政府数据倡议:探索早期采用者的使用程度

IF 7.8 1区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Government Information Quarterly Pub Date : 2024-06-27 DOI:10.1016/j.giq.2024.101955
Grace M. Begany , J. Ramon Gil-Garcia
{"title":"作为公共部门数字化转型推动力的开放式政府数据倡议:探索早期采用者的使用程度","authors":"Grace M. Begany ,&nbsp;J. Ramon Gil-Garcia","doi":"10.1016/j.giq.2024.101955","DOIUrl":null,"url":null,"abstract":"<div><p>Open government data initiatives are important agents of public sector digital transformation and understanding how agencies design, implement, and evaluate strategies for these initiatives is paramount to their ongoing success. However, a challenging and little understood aspect of open government data initiatives is precisely how open data users engage with and use these vital resources. This study examines the extent of open dataset use among early adopters using a cross-sectional analysis of web analytic behavioral data. We quantify early users' extent of use of open datasets from Health Data NY, the first state-level open health data platform. Results of a PLS-SEM analysis provide new empirical evidence that prior, or initial levels of open dataset use positively influence the later extent of open dataset use. Further, prior open government data use influences not only the later variety of open data activities, but also their depth of sophistication. Implications for practice include open data strategies to facilitate deeper, more extensive use of open dataset resources that lead to increased value creation, and ultimately, more effective digital transformation. Theoretically, this study contributes to the body of research on the Unified Theory of Acceptance and Use of Technology (UTAUT) by empirically testing its Use Behavior construct in light of early open data users' extent of use of open datasets, thus providing a more refined understanding of open data use behavior.</p></div>","PeriodicalId":48258,"journal":{"name":"Government Information Quarterly","volume":"41 3","pages":"Article 101955"},"PeriodicalIF":7.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open government data initiatives as agents of digital transformation in the public sector: Exploring the extent of use among early adopters\",\"authors\":\"Grace M. Begany ,&nbsp;J. Ramon Gil-Garcia\",\"doi\":\"10.1016/j.giq.2024.101955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Open government data initiatives are important agents of public sector digital transformation and understanding how agencies design, implement, and evaluate strategies for these initiatives is paramount to their ongoing success. However, a challenging and little understood aspect of open government data initiatives is precisely how open data users engage with and use these vital resources. This study examines the extent of open dataset use among early adopters using a cross-sectional analysis of web analytic behavioral data. We quantify early users' extent of use of open datasets from Health Data NY, the first state-level open health data platform. Results of a PLS-SEM analysis provide new empirical evidence that prior, or initial levels of open dataset use positively influence the later extent of open dataset use. Further, prior open government data use influences not only the later variety of open data activities, but also their depth of sophistication. Implications for practice include open data strategies to facilitate deeper, more extensive use of open dataset resources that lead to increased value creation, and ultimately, more effective digital transformation. Theoretically, this study contributes to the body of research on the Unified Theory of Acceptance and Use of Technology (UTAUT) by empirically testing its Use Behavior construct in light of early open data users' extent of use of open datasets, thus providing a more refined understanding of open data use behavior.</p></div>\",\"PeriodicalId\":48258,\"journal\":{\"name\":\"Government Information Quarterly\",\"volume\":\"41 3\",\"pages\":\"Article 101955\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Government Information Quarterly\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740624X24000479\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Government Information Quarterly","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740624X24000479","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

开放式政府数据计划是公共部门数字化转型的重要推动力,了解各机构如何设计、实施和评估这些计划的战略,对于这些计划的持续成功至关重要。然而,开放式政府数据计划的一个具有挑战性且鲜为人知的方面就是开放式数据用户如何参与和使用这些重要资源。本研究通过对网络分析行为数据的横截面分析,研究了早期采用者使用开放数据集的程度。我们量化了早期用户对纽约健康数据开放数据集的使用程度,纽约健康数据是首个州级开放健康数据平台。PLS-SEM 分析的结果提供了新的经验证据,即先前或最初的开放数据集使用水平会对后来的开放数据集使用程度产生积极影响。此外,先前的开放式政府数据使用不仅影响后来开放式数据活动的种类,还影响其复杂程度。本研究对实践的启示包括:制定开放数据战略,促进更深入、更广泛地使用开放数据集资源,从而创造更多价值,最终实现更有效的数字化转型。从理论上讲,本研究根据早期开放数据用户对开放数据集的使用程度,通过实证测试其 "使用行为"(Use Behavior)结构,为 "技术接受与使用统一理论"(Unified Theory of Acceptance and Use of Technology,UTAUT)的研究体系做出了贡献,从而提供了对开放数据使用行为更精细的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open government data initiatives as agents of digital transformation in the public sector: Exploring the extent of use among early adopters

Open government data initiatives are important agents of public sector digital transformation and understanding how agencies design, implement, and evaluate strategies for these initiatives is paramount to their ongoing success. However, a challenging and little understood aspect of open government data initiatives is precisely how open data users engage with and use these vital resources. This study examines the extent of open dataset use among early adopters using a cross-sectional analysis of web analytic behavioral data. We quantify early users' extent of use of open datasets from Health Data NY, the first state-level open health data platform. Results of a PLS-SEM analysis provide new empirical evidence that prior, or initial levels of open dataset use positively influence the later extent of open dataset use. Further, prior open government data use influences not only the later variety of open data activities, but also their depth of sophistication. Implications for practice include open data strategies to facilitate deeper, more extensive use of open dataset resources that lead to increased value creation, and ultimately, more effective digital transformation. Theoretically, this study contributes to the body of research on the Unified Theory of Acceptance and Use of Technology (UTAUT) by empirically testing its Use Behavior construct in light of early open data users' extent of use of open datasets, thus providing a more refined understanding of open data use behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Government Information Quarterly
Government Information Quarterly INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
15.70
自引率
16.70%
发文量
106
期刊介绍: Government Information Quarterly (GIQ) delves into the convergence of policy, information technology, government, and the public. It explores the impact of policies on government information flows, the role of technology in innovative government services, and the dynamic between citizens and governing bodies in the digital age. GIQ serves as a premier journal, disseminating high-quality research and insights that bridge the realms of policy, information technology, government, and public engagement.
期刊最新文献
A more secure framework for open government data sharing based on federated learning Does trust in government moderate the perception towards deepfakes? Comparative perspectives from Asia on the risks of AI and misinformation for democracy Open government data and self-efficacy: The empirical evidence of micro foundation via survey experiments Transforming towards inclusion-by-design: Information system design principles shaping data-driven financial inclusiveness Bridging the gap: Towards an expanded toolkit for AI-driven decision-making in the public sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1