具有三层结构的复合质子交换膜:增强热稳定性、质子传导性和燃料电池性能

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-07-01 DOI:10.1016/j.memsci.2024.122997
Chongshan Yin , Deyuan Chen , Mengyao Hu , Huihua Jing , Libing Qian , Chunqing He
{"title":"具有三层结构的复合质子交换膜:增强热稳定性、质子传导性和燃料电池性能","authors":"Chongshan Yin ,&nbsp;Deyuan Chen ,&nbsp;Mengyao Hu ,&nbsp;Huihua Jing ,&nbsp;Libing Qian ,&nbsp;Chunqing He","doi":"10.1016/j.memsci.2024.122997","DOIUrl":null,"url":null,"abstract":"<div><p>The optimal operating temperature for contemporary perfluoro-sulfonic acid (PFSA)-based proton exchange membranes (PEMs) is identified to range from 60 to 80 °C. However, operating at temperatures exceeding this threshold could offer substantial advantages. Therefore, the development of PEMs that can maintain performance at elevated temperatures is imperative. This study introduces novel SUS composite proton exchange membranes with a three-layer architecture. These membranes feature a central UIO-66-NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/Nafion composite layer (U), bordered by sulfonated carbon-nanotubes/Nafion composite layers (S) on both sides. The SUS PEMs demonstrate improved proton conductivity, long-term stability, fuel cell efficiency, and gas barrier properties. Notably, at the elevated temperature of 145 °C, attributable to enhanced water retention capabilities, these membranes exhibit significant proton conductivity, reaching 0.428 S cm<sup>−1</sup>. For fuel cell evaluations, the SUS PEMs exhibited optimal performance (0.940 W cm<sup>−2</sup>) at the elevated temperature of 115 °C. These improvements are attributed to the dense S layer, which regulates diffusion rates of both water and gas molecules, and the U layer, which serves as a water reservoir due to its high retention capacity. These conclusions have been validated through computational simulations and further supported by positron annihilation spectroscopy.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite proton exchange membrane featuring a three-layer structure: Enhanced thermal stability, proton conductivity, and fuel cell performance\",\"authors\":\"Chongshan Yin ,&nbsp;Deyuan Chen ,&nbsp;Mengyao Hu ,&nbsp;Huihua Jing ,&nbsp;Libing Qian ,&nbsp;Chunqing He\",\"doi\":\"10.1016/j.memsci.2024.122997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The optimal operating temperature for contemporary perfluoro-sulfonic acid (PFSA)-based proton exchange membranes (PEMs) is identified to range from 60 to 80 °C. However, operating at temperatures exceeding this threshold could offer substantial advantages. Therefore, the development of PEMs that can maintain performance at elevated temperatures is imperative. This study introduces novel SUS composite proton exchange membranes with a three-layer architecture. These membranes feature a central UIO-66-NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/Nafion composite layer (U), bordered by sulfonated carbon-nanotubes/Nafion composite layers (S) on both sides. The SUS PEMs demonstrate improved proton conductivity, long-term stability, fuel cell efficiency, and gas barrier properties. Notably, at the elevated temperature of 145 °C, attributable to enhanced water retention capabilities, these membranes exhibit significant proton conductivity, reaching 0.428 S cm<sup>−1</sup>. For fuel cell evaluations, the SUS PEMs exhibited optimal performance (0.940 W cm<sup>−2</sup>) at the elevated temperature of 115 °C. These improvements are attributed to the dense S layer, which regulates diffusion rates of both water and gas molecules, and the U layer, which serves as a water reservoir due to its high retention capacity. These conclusions have been validated through computational simulations and further supported by positron annihilation spectroscopy.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037673882400591X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882400591X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

当代基于全氟磺酸(PFSA)的质子交换膜(PEM)的最佳工作温度被确定为 60 至 80 °C。然而,在超过这一临界值的温度下工作可带来巨大优势。因此,开发能在高温下保持性能的质子交换膜势在必行。本研究介绍了具有三层结构的新型 SUS 复合质子交换膜。这些膜的特点是中间是 UIO-66-NH2/Nafion 复合层(U),两侧是磺化碳纳米管/Nafion 复合层(S)。SUS PEM 具有更好的质子传导性、长期稳定性、燃料电池效率和气体阻隔性能。值得注意的是,在 145 °C 的高温下,由于保水能力增强,这些膜表现出显著的质子传导性,达到 0.428 S cm-1。在燃料电池评估中,SUS PEM 在 115 °C 的高温下表现出最佳性能(0.940 W cm-2)。这些改进归功于致密的 S 层和 U 层,前者可调节水分子和气体分子的扩散速度,后者则因其较高的截留能力而成为储水层。这些结论通过计算模拟得到了验证,并得到了正电子湮灭光谱的进一步支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite proton exchange membrane featuring a three-layer structure: Enhanced thermal stability, proton conductivity, and fuel cell performance

The optimal operating temperature for contemporary perfluoro-sulfonic acid (PFSA)-based proton exchange membranes (PEMs) is identified to range from 60 to 80 °C. However, operating at temperatures exceeding this threshold could offer substantial advantages. Therefore, the development of PEMs that can maintain performance at elevated temperatures is imperative. This study introduces novel SUS composite proton exchange membranes with a three-layer architecture. These membranes feature a central UIO-66-NH2/Nafion composite layer (U), bordered by sulfonated carbon-nanotubes/Nafion composite layers (S) on both sides. The SUS PEMs demonstrate improved proton conductivity, long-term stability, fuel cell efficiency, and gas barrier properties. Notably, at the elevated temperature of 145 °C, attributable to enhanced water retention capabilities, these membranes exhibit significant proton conductivity, reaching 0.428 S cm−1. For fuel cell evaluations, the SUS PEMs exhibited optimal performance (0.940 W cm−2) at the elevated temperature of 115 °C. These improvements are attributed to the dense S layer, which regulates diffusion rates of both water and gas molecules, and the U layer, which serves as a water reservoir due to its high retention capacity. These conclusions have been validated through computational simulations and further supported by positron annihilation spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Interfacial oligomer splicing toward 3D silicon-centered polyimine nanofilm for rapid molecule/ion differentiation Hydrothermally rearranged cellulose membranes for controlled size sieving Polyelectrolyte-modified covalent organic framework membranes for multivalent cation removal Study on the effect mechanism of functional graphene oxide on the performance of polymer electrolyte membrane for fuel cells A novel dual-function antiscalant carboxymethyl cellulose-graft-protocatechuic acid for efficient scaling and biofouling prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1