用于高级肌腱修复的压电增强复合膜模拟肌腱电微环境

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2024-06-28 DOI:10.1016/j.nantod.2024.102381
Wenbo Wang , Pei Wang , Qinlin Li , Wufei Dai, Bingcheng Yi, Zhen Gao, Wei Liu, Xiansong Wang
{"title":"用于高级肌腱修复的压电增强复合膜模拟肌腱电微环境","authors":"Wenbo Wang ,&nbsp;Pei Wang ,&nbsp;Qinlin Li ,&nbsp;Wufei Dai,&nbsp;Bingcheng Yi,&nbsp;Zhen Gao,&nbsp;Wei Liu,&nbsp;Xiansong Wang","doi":"10.1016/j.nantod.2024.102381","DOIUrl":null,"url":null,"abstract":"<div><p>Tendon injuries, prevalent in clinical settings, predominantly arise from the disruption of the collagen matrix and are typically accompanied by pronounced inflammatory responses and perturbations in the tendon's intrinsic electrical microenvironment. Despite advancements in bridging tendon injuries, few strategies currently target the restoration of the tendon's native electrical microenvironment to facilitate repair. Herein, we fabricated electrospun fibers composed of polycaprolactone (PCL) loaded with dopamine (PDA) modified piezoelectric tetragonal-SrTiO<sub>3</sub> (T-SrTiO<sub>3</sub>) (T-SrTiO<sub>3</sub>@PCL) for overcoming this problem. The application of PCL based electrospun fibers favours the bridging of tendon injuries by reconstructing the collagen matrix, while the incorporation of piezoelectric T-SrTiO<sub>3</sub> simulates the endogenous electrical microenvironment of tendon tissue, with the PDA enhancing the combination between T-SrTiO<sub>3</sub> and PCL and thereby further increase piezoelectricity. The therapeutic potential of T-SrTiO<sub>3</sub>@PCL fibers in tendon repair was evidenced by their ability to modulate the inflammatory response, reduce angiogenesis, and upregulate tendon-specific gene expression, as demonstrated in both <em>in vivo</em> and <em>in vitro</em> experiments. These findings underscore the multifunctional electrospun fibers as a novel strategy for tendon repair, emphasizing the critical structure-function relationship in tendon tissue and recreating a conducive electrical microenvironment for regeneration.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1748013224002378/pdfft?md5=14fba532ffc0ea2ab6e2f15719f752b6&pid=1-s2.0-S1748013224002378-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair\",\"authors\":\"Wenbo Wang ,&nbsp;Pei Wang ,&nbsp;Qinlin Li ,&nbsp;Wufei Dai,&nbsp;Bingcheng Yi,&nbsp;Zhen Gao,&nbsp;Wei Liu,&nbsp;Xiansong Wang\",\"doi\":\"10.1016/j.nantod.2024.102381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tendon injuries, prevalent in clinical settings, predominantly arise from the disruption of the collagen matrix and are typically accompanied by pronounced inflammatory responses and perturbations in the tendon's intrinsic electrical microenvironment. Despite advancements in bridging tendon injuries, few strategies currently target the restoration of the tendon's native electrical microenvironment to facilitate repair. Herein, we fabricated electrospun fibers composed of polycaprolactone (PCL) loaded with dopamine (PDA) modified piezoelectric tetragonal-SrTiO<sub>3</sub> (T-SrTiO<sub>3</sub>) (T-SrTiO<sub>3</sub>@PCL) for overcoming this problem. The application of PCL based electrospun fibers favours the bridging of tendon injuries by reconstructing the collagen matrix, while the incorporation of piezoelectric T-SrTiO<sub>3</sub> simulates the endogenous electrical microenvironment of tendon tissue, with the PDA enhancing the combination between T-SrTiO<sub>3</sub> and PCL and thereby further increase piezoelectricity. The therapeutic potential of T-SrTiO<sub>3</sub>@PCL fibers in tendon repair was evidenced by their ability to modulate the inflammatory response, reduce angiogenesis, and upregulate tendon-specific gene expression, as demonstrated in both <em>in vivo</em> and <em>in vitro</em> experiments. These findings underscore the multifunctional electrospun fibers as a novel strategy for tendon repair, emphasizing the critical structure-function relationship in tendon tissue and recreating a conducive electrical microenvironment for regeneration.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1748013224002378/pdfft?md5=14fba532ffc0ea2ab6e2f15719f752b6&pid=1-s2.0-S1748013224002378-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224002378\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224002378","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

临床上常见的肌腱损伤主要源于胶原基质的破坏,通常伴有明显的炎症反应和肌腱固有电微环境的紊乱。尽管在弥合肌腱损伤方面取得了进展,但目前很少有策略以恢复肌腱的固有电微环境为目标来促进修复。为了克服这一问题,我们在这里制作了由聚己内酯(PCL)和多巴胺(PDA)修饰的压电四边形硒氧化物(T-SrTiO3)(T-SrTiO3@PCL)组成的电纺纤维。基于 PCL 的电纺纤维的应用有利于通过重建胶原基质来弥合肌腱损伤,而压电 T-SrTiO3 的加入则模拟了肌腱组织的内源性电微环境,PDA 增强了 T-SrTiO3 与 PCL 的结合,从而进一步提高了压电性。T-SrTiO3@PCL 纤维在肌腱修复中的治疗潜力体现在其调节炎症反应、减少血管生成和上调肌腱特异性基因表达的能力上,体内和体外实验均证明了这一点。这些发现强调了多功能电纺纤维作为肌腱修复的一种新策略,强调了肌腱组织中关键的结构-功能关系,并为肌腱再生再造了一个有利的电学微环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair

Tendon injuries, prevalent in clinical settings, predominantly arise from the disruption of the collagen matrix and are typically accompanied by pronounced inflammatory responses and perturbations in the tendon's intrinsic electrical microenvironment. Despite advancements in bridging tendon injuries, few strategies currently target the restoration of the tendon's native electrical microenvironment to facilitate repair. Herein, we fabricated electrospun fibers composed of polycaprolactone (PCL) loaded with dopamine (PDA) modified piezoelectric tetragonal-SrTiO3 (T-SrTiO3) (T-SrTiO3@PCL) for overcoming this problem. The application of PCL based electrospun fibers favours the bridging of tendon injuries by reconstructing the collagen matrix, while the incorporation of piezoelectric T-SrTiO3 simulates the endogenous electrical microenvironment of tendon tissue, with the PDA enhancing the combination between T-SrTiO3 and PCL and thereby further increase piezoelectricity. The therapeutic potential of T-SrTiO3@PCL fibers in tendon repair was evidenced by their ability to modulate the inflammatory response, reduce angiogenesis, and upregulate tendon-specific gene expression, as demonstrated in both in vivo and in vitro experiments. These findings underscore the multifunctional electrospun fibers as a novel strategy for tendon repair, emphasizing the critical structure-function relationship in tendon tissue and recreating a conducive electrical microenvironment for regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Multifunctional dendrimer-peptide conjugates for MET receptor-specific imaging of cancer cells Self-cascade ROS-trapping bioreaction system reverses stem cell oxidative stress fate for osteogenesis Complement opsonized protein corona activated by precoated immunoglobulin enables neutrophil-hitchhiking for rapid and enhanced drug delivery for acute liver failure recovery DNA nanotube-carrying antimicrobial peptide confers improved anti-infective therapy Hydrogen nanobubbles enhancing antioxidant activity of glutathione peroxidase: Superiority at the nanoscale over molecular scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1