Qiao Hu , Li Wang , Jinli Liu , Guangming Han , Jiaying Liao , Dongsheng Ren , Jianfeng Yao , Zonghai Chen , Xiangming He
{"title":"层状氧化物正极中的均匀导电网络对提高电动汽车电池的高倍率性能的重要意义","authors":"Qiao Hu , Li Wang , Jinli Liu , Guangming Han , Jiaying Liao , Dongsheng Ren , Jianfeng Yao , Zonghai Chen , Xiangming He","doi":"10.1016/j.etran.2024.100345","DOIUrl":null,"url":null,"abstract":"<div><p>The trade-off between battery energy density and power performance is the core problem that puzzles the development of electric vehicles (EVs). Although intensive researches are performed to explore active materials with good dynamics, the heterogeneous reactivity has been identified as an important cause for inferior capability and early death, especially for electrodes characterized with high areal loading and high compacted density. Herein, the heterogeneity and its origination of layered oxide-based (LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>1-x-y</sub>O<sub>2</sub>, NCM) electrodes at high C-rate are investigated through operando X-ray diffraction and <em>ex-situ</em> time-of-flight secondary ion mass spectrometry probe. By introducing Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@G composite as a mixed conductor additive, the heterogeneous reactivity intro-particles are successfully mitigated, enabling NCM electrodes with both high rate capability, high energy density and high cyclability. In detail, the capacity retention at 20C is increased by 2.3 times, and the capacity retention at 0.5C after 160 full cycles is increased by 1.6 times, without electrolyte additive or material modification. This study demonstrates the significance of the homogeneous electronic/ionic transportation network to the rate capability and lifetime of an electrode, and discloses the design strategy of multifunctional additives to enhance the power density of a battery by maximizing the utility of the active particles.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100345"},"PeriodicalIF":15.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of homogeneous conductive network in layered oxide-based cathode for high-rate capability of electric vehicle batteries\",\"authors\":\"Qiao Hu , Li Wang , Jinli Liu , Guangming Han , Jiaying Liao , Dongsheng Ren , Jianfeng Yao , Zonghai Chen , Xiangming He\",\"doi\":\"10.1016/j.etran.2024.100345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The trade-off between battery energy density and power performance is the core problem that puzzles the development of electric vehicles (EVs). Although intensive researches are performed to explore active materials with good dynamics, the heterogeneous reactivity has been identified as an important cause for inferior capability and early death, especially for electrodes characterized with high areal loading and high compacted density. Herein, the heterogeneity and its origination of layered oxide-based (LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>1-x-y</sub>O<sub>2</sub>, NCM) electrodes at high C-rate are investigated through operando X-ray diffraction and <em>ex-situ</em> time-of-flight secondary ion mass spectrometry probe. By introducing Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@G composite as a mixed conductor additive, the heterogeneous reactivity intro-particles are successfully mitigated, enabling NCM electrodes with both high rate capability, high energy density and high cyclability. In detail, the capacity retention at 20C is increased by 2.3 times, and the capacity retention at 0.5C after 160 full cycles is increased by 1.6 times, without electrolyte additive or material modification. This study demonstrates the significance of the homogeneous electronic/ionic transportation network to the rate capability and lifetime of an electrode, and discloses the design strategy of multifunctional additives to enhance the power density of a battery by maximizing the utility of the active particles.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"22 \",\"pages\":\"Article 100345\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000353\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000353","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Significance of homogeneous conductive network in layered oxide-based cathode for high-rate capability of electric vehicle batteries
The trade-off between battery energy density and power performance is the core problem that puzzles the development of electric vehicles (EVs). Although intensive researches are performed to explore active materials with good dynamics, the heterogeneous reactivity has been identified as an important cause for inferior capability and early death, especially for electrodes characterized with high areal loading and high compacted density. Herein, the heterogeneity and its origination of layered oxide-based (LiNixCoyMn1-x-yO2, NCM) electrodes at high C-rate are investigated through operando X-ray diffraction and ex-situ time-of-flight secondary ion mass spectrometry probe. By introducing Li3V2(PO4)3@G composite as a mixed conductor additive, the heterogeneous reactivity intro-particles are successfully mitigated, enabling NCM electrodes with both high rate capability, high energy density and high cyclability. In detail, the capacity retention at 20C is increased by 2.3 times, and the capacity retention at 0.5C after 160 full cycles is increased by 1.6 times, without electrolyte additive or material modification. This study demonstrates the significance of the homogeneous electronic/ionic transportation network to the rate capability and lifetime of an electrode, and discloses the design strategy of multifunctional additives to enhance the power density of a battery by maximizing the utility of the active particles.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.